measured impedance
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 38)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 24 (4) ◽  
pp. 25-45
Author(s):  
Vladimir F. Dmitrikov ◽  
Dmitry V. Shushpanov

Based on the measured impedance of the inductors wound on various ferrite cores and with a different number of turns, an equivalent high frequency (0 Hz 500 MHz) circuit model was built. The equivalent circuit model was built taking into account the physical processes occurring in the inductor: effect of wire resistance, effect of core material, mutual effect of wire and core material. The attempt explaining why the frequency characteristics (modulus and phase) of the inductor complex impedance have such a character in a wide frequency band (up to 500 MHz) was made. It was shown that for constructing an equivalent circuit model (structure and parameters), measuring only the inductors resistance modulus is not enough. It is also necessary to measure the phase of the inductor complex resistance, which is ignored in many works on the synthesis of an e inductor equivalent circuit.


2022 ◽  
Author(s):  
Cleofás Segura-Gómez ◽  
Ángel Palomares-Caballero ◽  
Pablo Padilla

This paper presents a vertically stacked SIW antenna array that enables different array configurations with the minimum number of SIW layers. This achievement lies in the modular feature offered by the proposed design. Specifically, 4 distinct array configurations can be produced with only 3 different design of SIW layers. Depending on the number of SIW layers employed in the stacked antenna, the directivity in the E-plane of radiation is modified. To obtain an equal and in-phase power distribution among the array elements, H- and E-plane corporate feeding networks are efficiently implemented in each array configuration. Array configurations of 1, 2, 4 and 8 radiating layers are offered by the proposed modular array, where each radiating layer is formed by 8 H-plane SIW horn antennas. The simulated directivity for the array configurations ranges from 15.8 dBi to 23.8 dBi and the main beam direction remains fixed along the operating frequency band. The array design has been manufactured and proper agreement between simulated and measured results are observed. The measured impedance bandwidth in all the array configurations is from 35 GHz to 41 GHz (15.79% bandwidth) with a reduction in the E-plane beamwidth as the number of radiating layers increases.


2021 ◽  
Vol 21 (5) ◽  
pp. 406-416
Author(s):  
Ch. Ramakrishna ◽  
G. A. E. Satish Kumar ◽  
P. Chandra Sekhar Reddy

A printed quadruple band-notched ultra-wideband (UWB) antenna characteristic is presented. The designed UWB antenna has a size of 32 mm × 30 mm × 1.6 mm and covers an impedance bandwidth off 2.9–14.5 GHz for the entire frequency band. The entire frequency band maintains voltage standing wave ratio (VSWR) <2, except at WiMAX (3.1–3.6 GHz), WLAN (4.92–6.12 GHz), downlink of X-band for satellite communication systems (7.5–8.4 GHz), and X-band (10.2–11 GHz). By inserting a pair of L-shaped slots into the radiating element, a H-shaped resonator and rectangular split-ring resonators are closely arranged to the microstrip feed-line, alongside the measured impedance bandwidth of 129%. The fabricated antenna radiation pattern and return loss is presented.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 76
Author(s):  
Jonghyeon Kim ◽  
Julia Kowal

In this paper, a method for monitoring SoC of a lithium-ion battery cell through continuous impedance measurement during cell operation is introduced. A multi-sine signal is applied to the cell operating current, and the cell SoH and SoC can be simultaneously monitored via impedance at each frequency. Unlike existing studies in which cell impedance measurement is performed ex situ through EIS equipment, cell state estimation is performed in situ. The measured impedance takes into account cell temperature and cell SoH, enabling accurate SoC estimation. The measurement system configured for the experiment and considerations for the selection of measurement parameters are described, and the accuracy of cell SoC estimation is presented.


2021 ◽  
Vol 10 (3) ◽  
pp. 14-23
Author(s):  
H. Malekpoor ◽  
M. Shahraki

This study presents two new designs of reduced size broadband microstrip patch antennas for ultra-wideband (UWB) operation. A folded triangular patch’s feeding technique, V-shaped slot, half V-shaped slot and shorting pins are employed to design the suggested antennas. The shorting pins are applied at the edge of structures to miniaturize the size of the patches. The suggested design with the V-shaped slot provides the measured impedance bandwidth (S11˂-10 dB) of 3.91-12 GHz (101.7%) for broadband application. In the suggested design with the V-shaped slot, the wide bandwidth with an acceptable size reduction is achieved. By introducing a suggested half design with the half V-shaped slot, the impedance bandwidth of the proposed half structure is improved from 4 to 17.22 GHz. The half design includes a measured impedance bandwidth of 124.6% with reduced size of more than 93% compared to the corresponding full design and an enhanced measured bandwidth of 23%. The obtained radiation and impedance results show that the suggested designs are applicable for wideband operation. Besides, the effects of some basic concepts and surface currents on the suggested structures are investigated to explain their broadband performance.


2021 ◽  
Vol 7 (2) ◽  
pp. 21-24
Author(s):  
Jan Liu ◽  
Lina Hauser ◽  
Marcel Kappel ◽  
Chris Göhring ◽  
Peter P. Pott

Abstract Localized impedance measurements at the needle tip identifying the present tissue type could aid clinicians in needle procedures. To assess the sensitivity field of a hollow, bipolar needle electrode, a 3D finite element approach using COMSOL Multiphysics was chosen. The simulated bipolar needle electrode consists of two hypodermic needles (17 G and 23 G) with an insulating layer of polytetrafluoroethylene (PTFE) in between. Impedance values were recorded while steadily increasing the insertion depth of the needle electrode in a layered tissue structure of skin (dermis), fat, and blood. Simulation results reveal a highly local sensitivity volume around the needle tip that can be approximated by half a tri-axial ellipsoid with elliptic radii of 0.735 mm, 2.886 mm, and 1.774 mm. A comparison with simulated and measured impedance values shows great correspondence.


Author(s):  
Melvin Chamakalayil Jose ◽  
Sankararajan Radha ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.


2021 ◽  
Author(s):  
Mohamed S. Ghoneim ◽  
Samar I. Ismail ◽  
Lobna A. Said ◽  
Ahmed M. Eltawil ◽  
Ahmed G. Radwan ◽  
...  

Abstract Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared among three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, FO Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem through a non-invasive method. Experiments are conducted on two samples of three different medical plant species under the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the frequency range from 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to find the most suitable circuit model that models the plant stem. The proposed models give the best results in all inter-electrode spacing distances. Four different meta-heuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


Sign in / Sign up

Export Citation Format

Share Document