rectangular slot
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 90)

H-INDEX

21
(FIVE YEARS 4)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 121
Author(s):  
Chao Xu ◽  
Yi Fan ◽  
Xiongying Liu

A circularly polarized implantable antenna integrated with a voltage-doubled rectifier (abbr., rectenna) is investigated for microwave wireless power transfer in the industrial, scientific, and medical (ISM) band of 2.4–2.48 GHz. The proposed antenna is miniaturized with the dimensions of 7.5 mm × 7.5 mm × 1.27 mm by etching four C-shaped open slots on the patch. A rectangular slot truncated diagonally is cut to improve the circular polarization performance of the antenna. The simulated impedance bandwidth in a three-layer phantom is 30.4% (1.9–2.58 GHz) with |S11| below −10 dB, and the 3-dB axial-ratio bandwidth is 16.9% (2.17–2.57 GHz). Furthermore, a voltage-doubled rectifier circuit that converts RF power to DC power is designed on the back of the antenna. The simulated RF-to-DC conversion efficiency can be up to 45% at the input power of 0 dBm. The proposed rectenna was fabricated and measured in fresh pork to verify the simulated results and evaluate the performance of wireless power transfer.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Manish Sharma ◽  
Prem Chand Vashist ◽  
Ibrahim Alsukayti ◽  
Nitin Goyal ◽  
Divya Anand ◽  
...  

This research article reports a compact fractal 4 × 4 UWB extended bandwidth MIMO antenna with physical dimensions of 44 × 44 mm2 for high-speed wireless applications. The reported antenna comprises four fractal radiating elements that are symmetrical and placed orthogonal to each other with a respective rectangular ground printed on the opposite plane. A higher isolation is achieved between the radiating elements by the placement of a fractal patch orthogonally and no separate decoupling structure is required. The antenna offers a −10 dB transmission capacity of 2.84–15.88 GHz. The fractal radiating element, which is embedded by an inverted T-type stub placed within a rectangular slot and an etched rotated C-type slot, provides band-stop filters for WiMAX (Worldwide inter-operability for Microwave Access) and WLAN (wireless local area network)-interfering bands. The key parameters of diversity performance are compared by simulation and measurement (fabricated prototype) of ECC (envelope correlation coefficient), DG (directive gain), TARC (total active reflection coefficient) and CCL (channel capacity loss). The antenna offers an omnidirectional radiation pattern with an average gain of 3.52 dBi.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Om Prakash Kumar ◽  
Pramod Kumar ◽  
Tanweer Ali

This article presents the design and analysis of a V-shaped ultrawideband (UWB) antenna and dual-band UWB notch antenna. A rectangular slot is cut into a semicircular partial ground plane of the antenna to achieve ultrawide bandwidth. A U-shape slot is etched on a V-shaped patch that radiates, and an inverted U-shape parasitic resonator is placed beside the feedline to generate dual-band notch characteristics. The overall dimension of the proposed antenna is 28×23 mm2. The proposed UWB antenna has a gain of 9.8 dB, S11 < −10 dB, impedance bandwidth in the range of 3.4 to 12.3 GHz, response with a linear phase, group delay <1 ns, and stable radiation pattern. The UWB notch antenna shows strong rejection in the WLAN band from 5.15 to 5.8 GHz with a notch at 5.6 GHz and X band from 9.1 to 10.5 GHz with a sharp notch at 9.6 GHz, having a S11 < −10 dB impedance bandwidth ranging from 3.2 to 11.7 GHz. This antenna also exhibits a stable radiation pattern, group delay <1 ns, and linear phase response throughout the bandwidth except at the rejection frequencies.


2021 ◽  
Vol 13 (24) ◽  
pp. 13926
Author(s):  
Nilotpal Kalita ◽  
Prateek Saxena ◽  
Mohammad Talha

The aim of this research is to optimize the corrugated fibreboard (CFB) boxes recommended by the Bureau of Indian Standards (BIS) for packaging apples and suggest improvements for the same with the help of finite element modelling technique. The motivation for the current study grew with the advent of the multipurpose use of corrugated fibreboard as a structural material, particularly for packaging boxes. A standard double walled (DW) panel box is considered for improvements in terms of ventilation slot configuration and reduction in material utilization for manufacturing through the implementation of a single walled (SW) panel box design. In order to maintain the structural integrity upon reduction in box construction material, the concept of stiffener has been introduced as a load-bearing enhancement feature. These enhancements will help establish a rationale and enable the corrugated fibreboard manufacturers and consumers to improve the understanding of the behaviour of such structures and help to check for the cost utilization, avoid overdesign and further mitigate the failures in practical applications. Full depth vertical rectangular slot was found to generate the least stresses and found to be suitable as ventilation slots. With the replacement with SW panel box, a saving in material consumption can be realized amounting to more than 34%. It was found that a 3-ply box configuration with a full-depth ventilation slot with panel stiffener can serve as a potential candidate for the replacement of the current box constituting of 5-ply panels recommended in the context of Indian standards.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3062
Author(s):  
Jalal Khan ◽  
Sadiq Ullah ◽  
Farooq A. Tahir ◽  
Faisel Tubbal ◽  
Raad Raad

This paper presents a novel antenna with its array and MIMO configuration for the 5G sub-6 GHz applications. The proposed antenna element operates at the central frequency of 5.57 GHz dedicated for Sub-6 GHz 5G communication applications. The antenna element holds a circular-shaped radiating portion with an inner-circular slot, plus a rectangular slot at its right edge to make the proposed design resonate at the desired frequency band. The RT5880 substrate is used with a thickness of 0.787 mm, and the low-loss tangent of 0.0009. To achieve a desired gain of 12 dB, a four-element array configuration is adopted, which improved a bore side gain to 12.4 dB from 6.66 dB. Then, the two-port configuration is adopted such that the isolation achieved between them is more than −30 dB. The total efficiency of the proposed antenna array is observed to be more than 80% within the operating bandwidth. Moreover, the Specific Absorption Rate (SAR) analysis is also presented for the proposed MIMO configuration, obeying the standard value (i.e., <2 W/kg for any 10 g of tissue). The measured results are in good agreement with the simulated results. All the simulations of the proposed design are performed in the CST MWS software.


2021 ◽  
Author(s):  
Alhad Phatak ◽  
Brian Seymour ◽  
Ginger Ren ◽  
Isaias Gonzalez

Abstract High Viscosity Friction Reducers (HVFRs) are often employed in hydraulic fracturing fluids to increase the proppant carrying capacity of slickwater fluids. However, it has been widely reported that the performance of HVFR fluids drops precipitously with even small amounts of salt. This study explores and reports the use of surfactants to alleviate the loss of performance of HVFR fluids due to salinity in the mix water. Fracturing fluids were prepared in the laboratory by mixing the HVFR at concentrations between 2 and 8 gal/1,000 gal with and without surfactant formulations. The viscosities of the fluids were measured on a TA Instruments DHR-3 rheometer using a concentric cylinder geometry. Both anionic and cationic HVFRs were tested with various surfactants. As expected, we observed that HVFR fluids display dramatic loss of viscosity with the addition of as little as 1% salt to the mix water. However, certain surfactant formulations were found to provide a significant boost in viscosity of HVFR fluids in brines over a wide range of shear rates. Increases in viscosity by a factor of as much as 10 times were observed, particularly at low shear rates. The ability of the surfactant formulations to enhance fluid viscosity was observed in both monovalent and divalent model brines, as well as brines that mimicked field produced water compositions. In addition, measurements were also performed in a slot flow device to determine if the results from the rheometer translated to proppant transport characteristics of the fluids. The slot flow results were found to correlate well with fluid viscosity measurements. The fluids containing the surfactant formulation transported nearly 4 times as much proppant as fluids not containing surfactant through a 2.5 ft. long rectangular slot of 0.5 in. thickness at a proppant concentration of 2 lb/gal. An obvious benefit of the approach proposed in this study is that it can enable the use of HVFR fluids in recycled and produced waters, providing both cost and sustainability benefits. Secondly, these surfactant formulations can reduce the amount of HVFR required to obtain a certain target viscosity in brine, thereby reducing the likelihood and potential severity of formation damage from HVFR residue.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1900
Author(s):  
Virginie Boy ◽  
Sahar Mlayah ◽  
Marina Giblaine ◽  
Yves Lemée ◽  
Jean-Louis Lanoisellé

This study deals with the improvement in drying process performances and the quality of the final product for industrial equipment in the food industry. Designers need to optimize the design parameters of devices to create synergies between the greater energy efficiency of the process and high-quality dried products. Air impingement drying was carried out on apple cylinders at 323 K and with air velocities ranging between 30 and 60 m s−1. The studied drying process presents a particular setup of jets as they are multiple rectangular slot jets issued from triangular nozzles. The effect of four design jet parameters (slot width, nozzle-to-surface height, nozzle-to-nozzle spacing, and airflow) on the drying process performances and the quality of the final product was analyzed and optimized using response surface methodology (RSM). A minimal influence of design jet parameters on the process performances was shown, while an important impact was observed on the quality of dried apple. The slot width and the nozzle-to-nozzle spacing had a significant effect on the textural and functional properties. Predictive models were established and good agreements were found between predictive and observed values. Sorption isotherms were properly modeled by the Guggenheim–Anderson–de Boer (GAB) model.


Sign in / Sign up

Export Citation Format

Share Document