Effective dielectric parameter method — A new method for analyzing propagation characteristics of dielectric waveguides

1989 ◽  
Vol 2 (12) ◽  
pp. 427-431
Author(s):  
Shi Zhendong ◽  
Li Jiang
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 863
Author(s):  
Xiaofeng Wang

In this manuscript, by using undetermined parameter method, an efficient iterative method with eighth-order is designed to solve nonlinear systems. The new method requires one matrix inversion per iteration, which means that computational cost of our method is low. The theoretical efficiency of the proposed method is analyzed, which is superior to other methods. Numerical results show that the proposed method can reduce the computational time, remarkably. New method is applied to solve the numerical solution of nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs). The nonlinear ODEs and PDEs are discretized by finite difference method. The validity of the new method is verified by comparison with analytic solutions.


2003 ◽  
Vol 18 (29) ◽  
pp. 5363-5419 ◽  
Author(s):  
YUE-LIANG WU

Through defining irreducible loop integrals (ILI's), a set of consistency conditions for the regularized (quadratically and logarithmically) divergent ILI's are obtained to maintain the generalized Ward identities of gauge invariance in non-Abelian gauge theories. The ILI's of arbitrary loop graphs can be evaluated from the corresponding Feynman loop integrals by adopting an ultraviolet (UV) divergence preserving parameter method. Overlapping UV divergences are explicitly shown to be factorizable in the ILI's and be harmless via suitable subtractions. A new regularization and renormalization method is presented in the initial space–time dimension of the theory. The procedure respects unitarity and causality. Of interest, the method leads to an infinity free renormalization and meanwhile maintains the symmetry principles of the original theory except the intrinsic mass scale caused conformal scaling symmetry breaking and the anomaly induced symmetry breaking. Tadpole graphs of Yang–Mills gauge fields are found to play an essential role for maintaining manifest gauge invariance via cancellations of quadratically divergent ILI's. Quantum field theories (QFT's) regularized through the new method are well defined and governed by a physically meaningful characteristic energy scale (CES) Mc and a physically interesting sliding energy scale (SES) μs which can run from μs ~ Mc to a dynamically generated mass gap μs = μc or to μs = 0 in the absence of mass gap and infrared (IR) problem. For Mc → ∞, the initial UV divergent properties of QFT's are recovered and well-defined. In fact, the CES Mc and SES at μs = μc play the role of UV and IR cutoff energy scales respectively. It is strongly indicated that the conformal scaling symmetry and its breaking mechanism play an important role for understanding the mass gap and quark confinement. The new method is developed to be applicable for both underlying renormalizable QFT's and effective QFT's. It also leads to a set of conjectures on mathematically interesting numbers and functional limits which may provide deep insights in mathematics.


Sign in / Sign up

Export Citation Format

Share Document