dielectric waveguides
Recently Published Documents


TOTAL DOCUMENTS

919
(FIVE YEARS 71)

H-INDEX

51
(FIVE YEARS 4)

Author(s):  
Rashmi Rekha Mishra ◽  
◽  
Karmila Soren ◽  

Fibre optics deals with study of propagation of light through transparent dielectric waveguides. The fibre optics is used for transmission of data from point to point location. Fibre optic systems currently used are most extensively as the transmission line between terrestrial hardwired systems. The carrier frequencies used in conventional systems had the limitations in handling the volume and rate of the data transmission. Greater the carrier frequency larger is the available bandwidth and information carrying capacity. This paper explains about Optical BPSK, where input data is converted to BPSK data which is optically modulated by optical modulator and transmitted through an optical fibre cable. The transmitted data and received data are compared in the end.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanh-Luan Vu ◽  
Stéphane Barlerin ◽  
Yves Stricot ◽  
Ronan Sauleau ◽  
Mauro Ettorre ◽  
...  

AbstractMm-wave dielectric waveguides are a promising and low-cost technology for the transmission of ultra-high data rates. Besides the attenuation (losses) and group delay, the bending loss of the dielectric waveguides is also one of the key parameters to establish the capacity and energy efficiency of such wired links, when deployed in realistic scenarios. In this context, we report the experimental characterizations of bending effects for various solid and hollow commercially available dielectric waveguides at V-band (50–75 GHz). A wide-band transition has been designed to carry out the measurements using a Vector Network Analyzer (VNA) and extension modules. The measured results are in very good agreement with full-wave simulations. Our experimental results show an average bending loss of 1.46 dB over the entire V-band for the fundamental $${HE}_{11}^{y}$$ HE 11 y mode of a PTFE solid dielectric waveguide (core diameter of 3.06 mm) with a 90° bending angle and 25 mm radius of curvature. This value rises up to 2.88 dB (or 3.25 dB) when bending radius is changed to 15 mm (or bending angle grows up to 140°). The measurements also show that the measured bending losses increase significantly for hollow dielectric waveguides, in particular when the inner to outer diameter ratio gets larger.


2021 ◽  
Vol 26 (3) ◽  
pp. 270-277
Author(s):  
D. V. Mayboroda ◽  
◽  
S. O. Pogarsky ◽  

Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of manufacturing the dielectric waveguides and functional units using them, the high degree of their integration with active elements, the use in their manufacture of different dielectrics and polymers with a wide range of material constants and a variety of mechanical properties (in particular, some materials have a significant flexibility). After making a series of physical experiments we have found the possibility of implementing the frequency selection and radiation into free space of electromagnetic waves by a hybrid metal-dielectric structure. Design/methodology/approach: The studied electrodynamic structure belongs to the class of hybrid metal-dielectric structures. It includes a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metallized coating on one of the faces placed outwards. The structure efficiency was estimated by the voltage standing-wave ratio (VSWR) values and power attenuation in the duct. The measurements were made with the reflectometer method. To estimate the degree of electromagnetic field concentration near the rod inhomogeneities in the near zone, the mobile probe method was used. The field structures were visualized with the method of isolines. Findings: The results of a series of experimental investigations showed the possibility of matching the structure with the external waveguides in the frequency range of 26.5-32.5 GHz with the voltage standing-wave ratio (VSWR) less than 1.8. The frequency dependence of attenuation is oscillatory with clearly expressed frequency ranges with small and large attenuation values. Moreover, the dependence is almost periodic, which is typical of periodic structures. The frequency response slope in the transition zones can be quite high and reach values of 41.26 dB/GHz. The degree of concentration of the electric field near the waveguide dielectric rod and the degree of excitation of the dielectric inhomogeneities was found by directly measured electric field strength in the near zone. Measurements of energy characteristics made under the short-circuit conditions for the main guide and in the mode of matched load of the main guide showed both the ability to control the polarization characteristics and the ability to change the appearance of the pattern and its orientation in space. Conclusions: It has been experimentally proven that a hybrid metal-dielectric structure, being a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metalized coating on one of the faces placed outwards, can be effectively integrated into a standard transmission line. It is found that this structure can be matched with the external circuits in a fairly wide frequency range. It is also found that in different frequency ranges this hybrid metal-dielectric structure shows the possibility of both efficient frequency selection and radiation in free space. Antenna measurements have shown the beam pattern shape controllability. Key words: inverted dielectric waveguide, periodic sequence, voltage standing-wave ratio (VSWR), attenuation, reflectometer method, mobile probe method, directivity pattern


Research in millimeter-wave dielectric waveguides is recently experiencing high interest in efficient data communication. Generally, channel interconnect remains a challenge for high- speed links design in satellite communication. This paper presents an analysis of Polytetrafluoroethylene (PTFE) interconnect at Ku band owing to its low-cost and efficient throughput. The effect of varying PTFE properties was examined based on the wavelength, propagation constant and attenuation, in other to advise on coating and energy escape outside the Polymer Microwave Fiber (PMF).


2021 ◽  
Vol 11 (18) ◽  
pp. 8367
Author(s):  
Artem S. Vorobev ◽  
Giuseppe Valerio Bianco ◽  
Giovanni Bruno ◽  
Antonella D’Orazio ◽  
Liam O’Faolain ◽  
...  

Graphene is a material with exceptional optical, electrical and physicochemical properties that can be combined with dielectric waveguides. To date, several optical devices based on graphene have been modeled and fabricated operating in the near-infrared range and showing excellent performance and broad application prospects. This paper covers the main aspects of the optical behaviour of graphene and its exploitation as electrodes in several device configurations. The work compares the reported optical devices focusing on the wavelength tuning, showing how it can vary from a few hundred up to a few thousand picometers in the wavelength range of interest. This work could help and lead the design of tunable optical devices with integrated graphene layers that operate in the NIR.


Author(s):  
Andrey V. Degtyarev ◽  
Mykola M. Dubinin ◽  
Oleg V. Gurin ◽  
Maxim N. Legenkiy ◽  
Vyacheslav A. Maslov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document