The potential role of gap junction communication between cumulus cells and bovine oocytes during in vitro maturation

2005 ◽  
Vol 71 (3) ◽  
pp. 358-367 ◽  
Author(s):  
Ali Atef ◽  
Paradis François ◽  
Vigneault Christian ◽  
Sirard Marc-André
2004 ◽  
Vol 71 (5) ◽  
pp. 1646-1651 ◽  
Author(s):  
Gregory Leyens ◽  
Benjamin Verhaeghe ◽  
Marie Landtmeters ◽  
Joëlle Marchandise ◽  
Bernard Knoops ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 121
Author(s):  
D. J. Walker ◽  
C. J. Wilusz ◽  
G. E. Seidel Jr

The maternal pool of mRNA undergoes major changes during oocyte maturation and early embryonic development. Specific genes are activated or degraded in response to changes in poly-(A) tail length. However, little is known about how the oocyte targets specific transcripts for degradation or translation in a timely manner. The objective of this study was to determine how poly-(A) tail length of different transcripts is affected in bovine oocytes by time of in vitro maturation. Cyclin B1 and GDF-9 32 untranslated regions (UTRs) were cloned into modified p-GEM plasmids containing a poly-(A) tract of 60 or 0 adenosines (A60 or A0, respectively). Each 32 UTR was transcribed in vitro with (A60) or without (A0) a poly-(A) tail to generate UTP32-labeled RNA. Transcriptions producing at least 200 000 counts per min (cpm) per �L were used for subsequent injections into denuded bovine oocytes. Cumulus-oocyte complexes (COCs) recovered from slaughterhouse-derived ovaries (n = 216) were vortexed to remove cumulus cells immediately after aspiration, after 3 h of in vitro maturation, or after 19 h of maturation in a chemically defined medium supplemented with FSH, LH, EGF, and cysteamine. After vortexing, denuded oocytes were injected and snap frozen, or matured in vitro for 1 or 3 h. Eight oocytes were injected with ~0.5 nL (~100 cpm/oocyte) labeled RNA at each time point in 3 replicates. Total RNA was isolated from injected oocyte pools and loaded onto a 5% denaturing acrylamide gel for size separation. Radiolabeled A0 was used as a control point of reference for deadenylation. Gels were dried, and RNA was visualized on a phosphoimager after 24 h exposure to a phosphor screen. Changes in polyadenylation status (transcript size) were evaluated by comparing shifts in bands from gene-specific A60


2018 ◽  
Vol 30 (1) ◽  
pp. 226
Author(s):  
F. C. Castro ◽  
L. Schefer ◽  
K. L. Schwarz ◽  
H. Fernandes ◽  
R. C. Botigelli ◽  
...  

Melatonin mediates several processes in animal reproduction and has drawn attention for its potent antioxidant, anti-apoptotic, anti-inflammatory action and, more recently, for its benefits on oocyte maturation and embryo development in vitro. The aim of this study was to assess the effect of melatonin during the in vitro maturation (IVM) on nuclear maturation of bovine oocytes and gene expression in their corresponding cumulus cells (CC). Bovine cumulus–oocyte complexes (COC) were obtained by aspiration of follicles (2-6 mm) from slaughterhouse ovaries, selected (grades I and II) and transferred to 4 well plates (25-30 COC/well) containing IVM medium [TCM-199 supplemented with sodium bicarbonate (26 mM), sodium pyruvate (0.25 mM), FSH (0.5 µg mL−1), LH (5.0 µg mL−1), 0.3% BSA, and gentamicin (50 µg mL−1)] with 0, 10−5, 10−7, 10−9 or 10−11 M melatonin and cultured for 24 h at 38.5°C and 5% CO2. At the end of IVM, oocytes were stained with Hoechst 33342 (10 μg mL−1) and evaluated for nuclear maturation rate. The CC were evaluated for the expression of antioxidant (SOD1, SOD2, GPX4), pro-apoptotic (P53, BAX) and expansion-related genes (PTX3, HAS1, HAS2). For transcript detection in CC, RNA isolation was performed with TRIzol®Reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription with High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). Relative quantification of transcripts was performed by RT-qPCR using 3 endogenous controls (β-actin, GAPDH, PPIA). Nuclear maturation rate and gene expression were tested by ANOVA and means were compared by Tukey’s test (6 replicates). In CC, the different concentrations of melatonin did not significantly alter expression of the investigated genes (P > 0.05), although all concentrations provided a numerical increase in the expression of the antioxidant SOD1 and of the expansion-related genes PTX3 and HAS2. Regarding the pro-apoptotic genes, concentrations of 10−11 and 10−9 M were able to reduce only numerically the expression of BAX and P53, respectively. In oocytes, the rate of nuclear maturation was not different among the tested treatments (P > 0.05), but it was numerically higher in the 10−7 M melatonin treated group compared with the control (69.71 ± 13.76% v. 88.1 ± 12.54%). In conclusion, under the studied conditions, melatonin was unable to improve maturation rate or to affect the expression of antioxidant, pro-apoptotic, and expansion-related genes in CC. Melatonin during IVM has shown variable results in different studies and appears to show different effects depending on culture conditions and parameters studied. In order to take advantage of the possible positive antioxidant effects of melatonin, other culture conditions and parameters should be investigated. In a next step, melatonin will be included during in vitro culture of embryos to evaluate its possible cytoprotective role, because such embryos are more exposed to oxidative stress during in vitro culture, and to investigate its benefits on developmental competence in vitro. This reaesrch was funded by FAPESP (2015/20379-0; 2014/17181-0).


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 857-868 ◽  
Author(s):  
Paola Pocar ◽  
Daniela Nestler ◽  
Michaela Risch ◽  
Bernd Fischer

Aroclor-1254 (A-1254) is a commercial mixture of coplanar (dioxin-like) and non-coplanar (non dioxin-like) polychlorinated biphenyls (PCBs) affecting bovine oocytein vitromaturation (IVM) and developmental competence. In the present study, the role of cumulus cell apoptosis in mediating the toxic effects of PCBs duringin vitromaturation has been investigated. Results indicate that exposure of cumulus–oocyte complexes (COCs) to A-1254 significantly induced apoptosis of cumulus cells. Furthermore, A-1254 significantly increased the expression of the pro-apoptotic gene, Bax, concomitantly reducing the level of the anti-apoptotic gene, Bcl-2, in the cumulus cell compartment. The effects of pure mixtures of coplanar (PCB 77, 126 and 169) or non-coplanar (PCB 52, 101 and 153) PCBs were examined. Exposure of COCs to coplanar PCBs affected maturation at doses as low as 100.6 pg/ml. Furthermore, a significant increase in apoptosis and in Bax mRNA expression was observed. No variations in maturation or apoptosis were observed in the non-coplanar PCB group. To further analyze the role of cumulus cells, COCs and denuded oocytes (DOs) have been exposed to A-1254 or coplanar PCBs during IVM. Exposure of COCs significantly reduced the percentage of matured oocytes after 24 h of culture in both treatments. In contrast, exposure of DOs significantly decreased the maturation rate only at the highest dose investigated (100-fold greater than that affecting COCs). Taken together, the results indicate a direct role of cumulus cell apoptosis in mediating PCB toxicity on bovine oocytes, and a direct relationship between congener planarity and toxicity in bovine oocytes is suggested.


2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 694-694
Author(s):  
Nicolas William Santiquet ◽  
Claude Robert ◽  
Francois Richard

2015 ◽  
Vol 27 (1) ◽  
pp. 204
Author(s):  
G. Singina ◽  
I. Lebedeva ◽  
T. Taradajnic ◽  
N. Zinovieva

The competence for embryonic development acquired during the oocyte maturation attenuates during the subsequent oocyte aging both in vivo and in vitro. Thus, the successful control of the female fertility requires information regarding factors responsible for the oocyte protection from early aging. The aim of the present research was to study the pattern and pathways of actions of two closely related pituitary hormones, prolactin (PRL), and growth hormone (GH), on the developmental potential of bovine oocytes during their aging in vitro. Therefore, we analysed (1) effects of PRL and GH during the prolonged culture of bovine oocytes on their subsequent development up to the blastocyst stage and (2) the role of cumulus cells (CC) and tyrosine kinases, the well-known mediators of PRL and GH signalling, in these effects. Bovine cumulus-enclosed oocytes (CEO) were cultured for 22 h in the following maturation medium: TCM 199 containing 10% fetal calf serum (FCS), 10 μg mL–1 of porcine FSH, and 10 μg mL–1 of ovine LH. After IVM, CEO or denuded oocytes (DO) were transferred to the aging medium consisting of TCM 199 supplemented with 10% FCS and cultured for 10 h in the absence (Control) or presence of 50 ng mL–1 bovine PRL or 10 ng mL–1 recombinant bovine GH and/or 10 μg mL–1 genistein (a non-selective inhibitor of tyrosine kinases). Genistein was not applied in the case of aging DO, since their developmental potential was not affected by both hormones. Following the prolonged culture, oocytes underwent IVF and IVC. Embryos were cultured in CR1aa medium until Day 5 post-insemination and then transferred to the same medium supplemented with 5% FCS and cultured up to Day 8. The embryo development was evaluated at Days 2 and 8 for cleavage and blastocyst formation. The data from 5 to 6 replicates using 135–184 oocytes per treatment were analysed by ANOVA. Aging of oocytes in the control medium had no effect on the cleavage rate, but caused the blastocyst yield to decline (P < 0.001) from 31.1 ± 2.3% (CEO fertilized immediately after maturation) to 10.5 ± 2.4% (aged CEO) and 7.9 ± 1.9% (aged DO). Cleavage rates of aging CEO and DO were unaffected by both PRL and GH. In the case of CEO, the addition of PRL (but not GH) to the aging medium raised the blastocyst yield from 8.2 ± 0.9% to 15.2 ± 2.1% (P < 0.05), whereas the removal of CC abolished this effect, reducing the yield up to 9.1 ± 2.7% (P < 0.05). At the same time, genistein did not influence the blastocyst yield in the PRL-treated group. The findings demonstrate that PRL can inhibit the attenuation of the developmental competence of bovine oocytes aging in vitro, with this effect being achieved via cumulus cells. Tyrosine kinases are unlikely to mediate the beneficial action of PRL on the CEO capacity for embryonic development. Meanwhile, closely related GH does not affect the developmental competence of aging bovine oocytes.This research was supported by RFBR (project No. 13-04-01888).


1997 ◽  
Vol 57 (6) ◽  
pp. 1420-1425 ◽  
Author(s):  
Daniel G. de Matos ◽  
Cecilia C. Furnus ◽  
Daniel F. Moses

1995 ◽  
Vol 44 (1) ◽  
pp. 109-118 ◽  
Author(s):  
P.L. Lorenzo ◽  
M.J. Illera ◽  
J.C. Illera ◽  
M. Illera

Sign in / Sign up

Export Citation Format

Share Document