Role of EGF, IGF-I, sera and cumulus cells on maturation in vitro of bovine oocytes

1995 ◽  
Vol 44 (1) ◽  
pp. 109-118 ◽  
Author(s):  
P.L. Lorenzo ◽  
M.J. Illera ◽  
J.C. Illera ◽  
M. Illera
Author(s):  
Aslihan Turhan ◽  
Miguel Tavares Pereira ◽  
Gerhard Schuler ◽  
Ulrich Bleul ◽  
Mariusz P Kowalewski

Abstract Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P < 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P < 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P < 0.05) or PX-478 (P < 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 857-868 ◽  
Author(s):  
Paola Pocar ◽  
Daniela Nestler ◽  
Michaela Risch ◽  
Bernd Fischer

Aroclor-1254 (A-1254) is a commercial mixture of coplanar (dioxin-like) and non-coplanar (non dioxin-like) polychlorinated biphenyls (PCBs) affecting bovine oocytein vitromaturation (IVM) and developmental competence. In the present study, the role of cumulus cell apoptosis in mediating the toxic effects of PCBs duringin vitromaturation has been investigated. Results indicate that exposure of cumulus–oocyte complexes (COCs) to A-1254 significantly induced apoptosis of cumulus cells. Furthermore, A-1254 significantly increased the expression of the pro-apoptotic gene, Bax, concomitantly reducing the level of the anti-apoptotic gene, Bcl-2, in the cumulus cell compartment. The effects of pure mixtures of coplanar (PCB 77, 126 and 169) or non-coplanar (PCB 52, 101 and 153) PCBs were examined. Exposure of COCs to coplanar PCBs affected maturation at doses as low as 100.6 pg/ml. Furthermore, a significant increase in apoptosis and in Bax mRNA expression was observed. No variations in maturation or apoptosis were observed in the non-coplanar PCB group. To further analyze the role of cumulus cells, COCs and denuded oocytes (DOs) have been exposed to A-1254 or coplanar PCBs during IVM. Exposure of COCs significantly reduced the percentage of matured oocytes after 24 h of culture in both treatments. In contrast, exposure of DOs significantly decreased the maturation rate only at the highest dose investigated (100-fold greater than that affecting COCs). Taken together, the results indicate a direct role of cumulus cell apoptosis in mediating PCB toxicity on bovine oocytes, and a direct relationship between congener planarity and toxicity in bovine oocytes is suggested.


2015 ◽  
Vol 27 (1) ◽  
pp. 204
Author(s):  
G. Singina ◽  
I. Lebedeva ◽  
T. Taradajnic ◽  
N. Zinovieva

The competence for embryonic development acquired during the oocyte maturation attenuates during the subsequent oocyte aging both in vivo and in vitro. Thus, the successful control of the female fertility requires information regarding factors responsible for the oocyte protection from early aging. The aim of the present research was to study the pattern and pathways of actions of two closely related pituitary hormones, prolactin (PRL), and growth hormone (GH), on the developmental potential of bovine oocytes during their aging in vitro. Therefore, we analysed (1) effects of PRL and GH during the prolonged culture of bovine oocytes on their subsequent development up to the blastocyst stage and (2) the role of cumulus cells (CC) and tyrosine kinases, the well-known mediators of PRL and GH signalling, in these effects. Bovine cumulus-enclosed oocytes (CEO) were cultured for 22 h in the following maturation medium: TCM 199 containing 10% fetal calf serum (FCS), 10 μg mL–1 of porcine FSH, and 10 μg mL–1 of ovine LH. After IVM, CEO or denuded oocytes (DO) were transferred to the aging medium consisting of TCM 199 supplemented with 10% FCS and cultured for 10 h in the absence (Control) or presence of 50 ng mL–1 bovine PRL or 10 ng mL–1 recombinant bovine GH and/or 10 μg mL–1 genistein (a non-selective inhibitor of tyrosine kinases). Genistein was not applied in the case of aging DO, since their developmental potential was not affected by both hormones. Following the prolonged culture, oocytes underwent IVF and IVC. Embryos were cultured in CR1aa medium until Day 5 post-insemination and then transferred to the same medium supplemented with 5% FCS and cultured up to Day 8. The embryo development was evaluated at Days 2 and 8 for cleavage and blastocyst formation. The data from 5 to 6 replicates using 135–184 oocytes per treatment were analysed by ANOVA. Aging of oocytes in the control medium had no effect on the cleavage rate, but caused the blastocyst yield to decline (P < 0.001) from 31.1 ± 2.3% (CEO fertilized immediately after maturation) to 10.5 ± 2.4% (aged CEO) and 7.9 ± 1.9% (aged DO). Cleavage rates of aging CEO and DO were unaffected by both PRL and GH. In the case of CEO, the addition of PRL (but not GH) to the aging medium raised the blastocyst yield from 8.2 ± 0.9% to 15.2 ± 2.1% (P < 0.05), whereas the removal of CC abolished this effect, reducing the yield up to 9.1 ± 2.7% (P < 0.05). At the same time, genistein did not influence the blastocyst yield in the PRL-treated group. The findings demonstrate that PRL can inhibit the attenuation of the developmental competence of bovine oocytes aging in vitro, with this effect being achieved via cumulus cells. Tyrosine kinases are unlikely to mediate the beneficial action of PRL on the CEO capacity for embryonic development. Meanwhile, closely related GH does not affect the developmental competence of aging bovine oocytes.This research was supported by RFBR (project No. 13-04-01888).


2008 ◽  
Vol 88 (3) ◽  
pp. 463-467 ◽  
Author(s):  
A. Marques ◽  
P. Santos ◽  
G. Antunes ◽  
A. Chaveiro ◽  
F. Moreira da Silva

This study determined: the effects of α-tocopherol on apoptotic and necrotic levels of cumulus cells after in vitro maturation of bovine oocytes; whether exposure to α-tocopherol facilitates the development of bovine enclosed oocytes to metaphase II; and the effects of this antioxidant on apoptotic and necrotic levels of granulosa cells cultured in vitro. In conclusion, supplementation with α-tocopherol on in vitro maturation of bovine oocytes has a detrimental effect on the ability of oocytes to reach metaphase II, increasing the number of apoptotic and necrotic cumulus cells of bovine cumulus oocyte complexes (COC). This antioxidant showed a slight improvement in the viability of cultured granulosa cells at a concentration of 100 µM. Key words: Bovine, oocyte maturation in vitro, antioxidant, α-tocopherol


2004 ◽  
Vol 71 (5) ◽  
pp. 1646-1651 ◽  
Author(s):  
Gregory Leyens ◽  
Benjamin Verhaeghe ◽  
Marie Landtmeters ◽  
Joëlle Marchandise ◽  
Bernard Knoops ◽  
...  

1997 ◽  
Vol 9 (8) ◽  
pp. 763 ◽  
Author(s):  
K. S. Kim ◽  
N. Minami ◽  
M. Yamada ◽  
K. Utsumi

The present study examined the time-dependent effects of follicular cells on the fertilizability of oocytes and their subsequent development to blastocysts. The percentages of oocytes reaching the metaphase-II stage of maturation rose from 51·3% after 16 h of culture to 86·2% at 28 h (cumulus-intact oocytes; CIO) and, for the same time points, from 65·4% to 83·3% (corona-enclosed oocytes; CO) and 54·3% to 88·9% (denuded oocytes; DO), respectively. When DO were cultured for more than 24 h before insemination, fertilization rates were significantly lower compared with CIO and CO. The maximum rates of development to blastocysts were observed when the oocytes were cultured for 24 h in the CIO group (22·1%), 20 h in the CO group (19· 7%) and 18 h in the DO group (9·2%), respectively. These results suggest that (i) the presence of cumulus cells or corona cells during maturation is not necessary for nuclear maturation of oocytes; (ii) the attachment of corona cells to the oocytes during maturation is important for the further development to the blastocyst stage, and (iii) the presence of attached cumulus and/or corona cells during maturation in vitro extends the maturation period required for further development to the blastocyst stage.


Sign in / Sign up

Export Citation Format

Share Document