scholarly journals Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts

2007 ◽  
Vol 75 (2) ◽  
pp. 250-264 ◽  
Author(s):  
Aaron J. Bonk ◽  
Rongfeng Li ◽  
Liangxue Lai ◽  
Yanhong Hao ◽  
Zhonghua Liu ◽  
...  
2019 ◽  
Vol 31 (1) ◽  
pp. 148
Author(s):  
Y. H. Zhai ◽  
X. L. An ◽  
Z. R. Zhang ◽  
S. Zhang ◽  
Z. Y. Li

During fertilization, the parental genome undergoes extensive demethylation. Global DNA demethylation is a hallmark of epigenetic reprogramming. Embryos engage non-canonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional germline features. However, the mechanisms ensuring demethylation resistance in light of global reprogramming remain poorly understood. TRIM28 is a maternal-effect factor that controls genomic imprinting during early embryonic reprogramming. In this study, cytoplasmic injections of siRNA were performed into oocytes matured in vitro for 26h to interfere with the expression of TRIM28 in oocytes. The injected oocytes were continually matured in vitro until 42h and used to construct somatic cell nuclear transfer (SCNT) embryos. During 2-cell to blastocyst stages, the expression of development-related genes (NANOG, POU5F1, CDX2, BAX, and BCL2), maternal imprinting genes (IGF2, DIO3, PLAGL1, and DLK1), paternal imprinting genes (H19 and PEG3), TRIM28-recruitment complex-associated genes (ZFP57, PGC7, SETDB1, and DNMT), and epigenetic chromatin modification enzymes were detected by quantitative PCR in the constructed TRIM28-interfered SCNT embryos. The DNA methylation levels in the promoter regions of the imprinted genes (H19 and IGF2) and chromatin repeats (PRE-1 and SATELLITE) were analysed by sodium bisulfite genomic sequencing. The results showed that the TRIM28-interfered SCNT embryos had significantly lower cleavage and blastocyst rates (53.9±3.4% and 12.1±4.3%, respectively) than those in control SCNT embryos (64.8±2.7% and 18.8±1.9%, respectively). The expression levels of development-related genes (NANOG and POU5F1) and TRIM28-recruited transcriptional repression complex-associated genes (PGC7, ZFP57, and DNMT1) in the 4-cell stage were significantly reduced (P<0.05). The imprinted genes were significantly up-regulated (P<0.05) from the 2-cell to blastocyst stage in constructed TRIM28-interfered SCNT embryos, except H19 at the 2-cell and blastocyst stage decreased remarkably (P<0.05). The DNA methylation levels of IGF2 decreased 2-fold from the 2-cell to blastocyst stage in TRIM28-interfered SCNT embryos. The PRE-1 and SATELLITE had a remarkably lower (P<0.05) methylation levels in the TRIM28-interfered 2-cell embryos than in control SCNT embryos. The cluster analysis showed some of the chromatin modification enzymes had abnormal expression in the TRIM28-interfered SCNT embryos, especially in the 8-cell stage, where 48 enzymes were significantly decreased (P<0.05). The down-regulation enzymes were mainly clustered in the histone H3K4 methyl transferase and histone acetylase. These results indicate that down-regulation of maternal TRIM28 breaks the steady-state of genomic methylation at a particular locus of the imprinted gene, disrupts the expression of imprinted gene and epigenetic modifications enzymes, and is detrimental to normal development of SCNT embryos. Maternal TRIM28 is needed in maintaining a stable state of genomic methylation and epigenetic modification state during SCNT embryo development.


2011 ◽  
Vol 23 (1) ◽  
pp. 125
Author(s):  
R. S. Deshmukh ◽  
O. Oestrup ◽  
E. Oestrup ◽  
M. Vejlsted ◽  
H. Niemann ◽  
...  

DNA de- and re-methylation are crucial for reprogramming of the differentiated parental/somatic genome in the ooplasm. The presented research was aimed at analysis of the DNA methylation dynamics in porcine preimplantation embryos developed in vivo (IV) and produced in vitro by IVF, somatic cell nuclear transfer (SCNT), and parthenogenetic activation (PA). Embryos of early and late 1-cell, 2-, 4-, and 8-cell, and early and late blastocysts stages obtained by the mentioned methods were fixed in 4% paraformaldehyde and subjected to immunocytochemistry using anti-5MetC (Mouse monoclonal, Abcam, Cambridge, MA, USA) antibody. DNA was labelled using Hoechst 33258 (Sigma, Copenhagen, Denmark). Epifluorescence microscopy (Leica Microsystems, Wetzlar, Germany) images were subjected to NIH imageJ software to measure the DNA methylation/DNA content signal by manually outlining the nuclei (n = 2003) of the embryos. The data were analysed using PROC-GLM statistical procedure in SAS 9.1 (SAS Institute Inc., Cary, NC, USA), least square means were compared and P-values were used to decide the significant differences within and between different groups of embryos. The 1-cell stages lacked active demethylation of paternal genome in IV and IVF embryos. Embryos produced under in vitro conditions presented higher levels of DNA methylation than IV. A lineage specific DNA methylation (hypermethylation of inner cell mass and hypomethylation of trophectoderm) observed in porcine IV late blastocysts was absent in PA and SCNT blastocysts despite the occurrence of de novo methylation in early blastocysts. SCNT early (50%) and late (14%) blastocysts presented DNA methylation pattern similar to IV early and late blastocysts, respectively. Concluding, DNA methylation patterns are strongly impaired under in vitro conditions in porcine preimplantation embryos.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1034
Author(s):  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Lian Cai ◽  
Mirae Kim ◽  
...  

This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.


2016 ◽  
Vol 18 (4) ◽  
pp. 230-236 ◽  
Author(s):  
Wenzhe Li ◽  
Yongjie Xiong ◽  
Fengyu Wang ◽  
Xin Liu ◽  
Yang Gao ◽  
...  

2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


2018 ◽  
Vol 50 (4) ◽  
pp. 1376-1397 ◽  
Author(s):  
Yanhui Zhai ◽  
Zhiren Zhang ◽  
Hao Yu ◽  
Li Su ◽  
Gang Yao ◽  
...  

Background/Aims: DNA methylation and histone modifications are essential epigenetic marks that can significantly affect the mammalian somatic cell nuclear transfer (SCNT) embryo development. However, the mechanisms by which the DNA methylation affects the epigenetic reprogramming have not been fully elucidated. Methods: In our study, we used quantitative polymerase chain reaction (qPCR), Western blotting, immunofluorescence staining (IF) and sodium bisulfite genomic sequencing to examine the effects of RG108, a DNA methyltransferase inhibitor (DNMTi), on the dynamic pattern of DNA methylation and histone modifications in porcine SCNT embryos and investigate the mechanism by which the epigenome status of donor cells’ affects SCNT embryos development and the crosstalk between epigenetic signals. Results: Our results showed that active DNA demethylation was enhanced by the significantly improving expression levels of TET1, TET2, TET3 and 5hmC, and passive DNA demethylation was promoted by the remarkably inhibitory expression levels of DNMT1, DNMT3A and 5mC in embryos constructed from the fetal fibroblasts (FFs) treated with RG108 (RG-SCNT embryos) compared to the levels in embryos from control FFs (FF-SCNT embryos). The signal intensity of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 acetylation (H3K9Ac) was significantly increased and the expression levels of H3K4 methyltransferases were more than 2-fold higher expression in RG-SCNT embryos. RG-SCNT embryos had significantly higher cleavage and blastocyst rates (69.3±1.4%, and 24.72±2.3%, respectively) than FF-SCNT embryos (60.1±2.4% and 18.38±1.9%, respectively). Conclusion: Dynamic changes in DNA methylation caused by RG108 result in dynamic alterations in the patterns of H3K4me3, H3K9Ac and histone H3 lysine 9 trimethylation (H3K9me3), which leads to the activation of embryonic genome and epigenetic modification enzymes associated with H3K4 methylation, and contributes to reconstructing normal epigenetic modifications and improving the developmental efficiency of porcine SCNT embryos.


Sign in / Sign up

Export Citation Format

Share Document