scholarly journals Correlated functional connectivity and glucose metabolism in brain white matter revealed by simultaneous MRI/positron emission tomography

Author(s):  
Bin Guo ◽  
Fugen Zhou ◽  
Muwei Li ◽  
John C. Gore ◽  
Zhaohua Ding

Author(s):  
Keenan A. Walker ◽  
Noah Silverstein ◽  
Yun Zhou ◽  
Timothy M. Hughes ◽  
Clifford R. Jack ◽  
...  

Background White matter abnormalities are a common feature of aging and Alzheimer disease, and tend to be more severe among Black individuals. However, the extent to which white matter abnormalities relate to amyloid deposition, a marker of Alzheimer pathology, remains unclear. This cross‐sectional study examined the association of white matter abnormalities with cortical amyloid in a community sample of older adults without dementia and examined the moderating effect of race. Methods and Results Participants from the ARIC‐PET (Atherosclerosis Risk in Communities‐Positron Emission Tomography) study underwent brain magnetic resonance imaging, which quantified white matter hyperintensity volume and microstructural integrity using diffusion tensor imaging. Participants received florbetapir positron emission tomography imaging to measure brain amyloid. Associations between measures of white matter structure and elevated amyloid status were examined using multivariable logistic regression. Among 322 participants (43% Black), each SD increase in white matter hyperintensity volume was associated with a greater odds of elevated amyloid (odds ratio [OR], 1.37; 95% CI, 1.03–1.83) after adjusting for demographic and cardiovascular risk factors. In race‐stratified analyses, a greater white matter hyperintensity volume was more strongly associated with elevated amyloid among Black participants (OR, 2.00; 95% CI, 1.15–3.50), compared with White participants (OR, 1.29; 95% CI, 0.89–1.89). However, the race interaction was not statistically significant ( P interaction=0.09). We found no association between white matter microstructure and elevated amyloid. Conclusions The results suggest a modest positive relationship between white matter hyperintensity and elevated amyloid in older adults without dementia. Although the results indicate that this association is nonsignificantly stronger among Black participants, these findings will need to be confirmed or refuted using larger multiracial cohorts.



1999 ◽  
Vol 41 (6) ◽  
pp. 689-692 ◽  
Author(s):  
ZENICHIRO Kato ◽  
KANJI Yasuda ◽  
KAZUNARI Ishii ◽  
HAJIME Takagi ◽  
SHINJI Mizuno ◽  
...  






1987 ◽  
Vol 7 (2) ◽  
pp. 214-229 ◽  
Author(s):  
K. Herholz ◽  
C. S. Patlak

An analytical method based on Taylor expansions was developed to analyze errors caused by tissue heterogeneity in dynamic positron emission tomography (PET) measurements. Some general rules concerning the effect of parameter variances and covariances were derived. The method was further applied to various compartmental models currently used for measurement of blood flow, capillary permeability, glucose metabolism, and tracer binding. Blood flow and capillary permeability are shown to be generally underestimated in heterogenous tissue, the underestimation being more severe for slowly decaying, constant or increasing input functions rather than for bolus input, and increasing with measurement time. Typical errors caused by the heterogeneity due to insufficient separation between gray and white matter by a PET scanner with full width at half-maximum (FWHM)= 5 to 10 mm resolution range between–0.9 and–6% in dynamic CBF measurements with intravenous (i. v.) bolus injection of 15O-water or inhalation of 18F-fluoromethane and total measurement times of6 or 10 min, respectively. Binding or metabolic rates determined with tracers that are essentially trapped in tissue (e.g., FDG for measurement of cerebral glucose metabolism) are only slightly overestimated (0.5–3.0%) at typical measurement times and are essentially independent of the shape of the input function. The error increases considerably if tracer accumulation is very slow, however, or if short measurement times [<5/(k2 + k3)] are used. Some rate constants are also subject to larger errors.



Sign in / Sign up

Export Citation Format

Share Document