Time to failure of a sustained contraction is predicted by target torque and initial electromyographic bursts in elbow flexor muscles

2007 ◽  
Vol 35 (5) ◽  
pp. 657-666 ◽  
Author(s):  
Thorsten Rudroff ◽  
Evangelos A. Christou ◽  
Brach Poston ◽  
Jens Bojsen-Møller ◽  
Roger M. Enoka
2011 ◽  
Vol 110 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Thorsten Rudroff ◽  
Jamie N. Justice ◽  
Matthew R. Holmes ◽  
Stephen D. Matthews ◽  
Roger M. Enoka

The primary purpose of this study was to determine the influence of load compliance on time to failure during sustained isometric contractions performed with the elbow flexor muscles at four submaximal target forces. Subjects pulled against a rigid restraint during the force task and maintained a constant elbow angle, while supporting an equivalent inertial load during the position task. Each task was sustained for as long as possible. Twenty-one healthy adults (23 ± 6 yr; 11 men) participated in the study. The maximal voluntary contraction (MVC) force was similar ( P = 0.95) before the subjects performed the force and position tasks at each of the four target forces: 20, 30, 45, and 60% of MVC force. The time to task failure was longer for the force tasks (576 ± 80 and 325 ± 70 s) than for the position tasks (299 ± 77 and 168 ± 35 s) at target forces of 20 and 30% ( P < 0.001), but was similar for the force tasks (178 ± 35 and 86 ± 14 s) and the position tasks (132 ± 29 and 87 ± 14 s) at target forces of 45 and 60% ( P > 0.19). The briefer times to failure for the position task at the lower forces were accompanied by greater rates of increase in elbow flexor muscle activity, mean arterial pressure, heart rate, and rating of perceived exertion. There was no difference in the estimates of external mechanical work at any target force. The dominant mechanisms limiting time to failure of sustained isometric contractions with the elbow flexor muscles appear to change at target forces between 30 and 45% MVC, with load compliance being a significant factor at lower forces only.


2006 ◽  
Vol 95 (2) ◽  
pp. 1185-1193 ◽  
Author(s):  
Carol J. Mottram ◽  
Katrina S. Maluf ◽  
Jennifer L. Stephenson ◽  
Melissa K. Anderson ◽  
Roger M. Enoka

Vibration reduces the amplitudes of the tendon jerk response and the Hoffmann and stretch reflexes in the muscle exposed to the vibration, yet does not alter the time to task failure when the task involves exerting a submaximal force against a rigid restraint. Because the amplitude of the stretch reflex is greater when a limb acts against a compliant load than a rigid restraint, the purpose was to determine the influence of prolonged tendon vibration on the time to failure when maintaining limb position with the elbow flexor muscles. Twenty-five healthy men performed the fatiguing contraction by maintaining elbow angle at 1.57 rad until failure while supporting a load equal to 20% of maximal voluntary contraction (MVC) force. The fatiguing contraction was performed on 3 separate days with different levels of vibration applied to the biceps brachii tendon: no vibration, subthreshold for a tonic vibration reflex (TVR), and suprathreshold for a TVR. MVC force before the fatiguing contraction was similar across the three sessions (mean of 3 sessions: 313 ± 54 N, P = 0.83). Despite a similar decline in MVC force after the fatiguing contraction across conditions (–18.0 ± 8.0%, P > 0.05), the time to task failure was 3.7 ± 1.4 min for the suprathreshold TVR condition, 4.3 ± 2.1 min for the subthreshold TVR condition, and 5.0 ± 2.2 min for the no-vibration condition ( P < 0 0.001). The average EMG of the elbow flexor muscles was similar ( P = 0.22) during the fatiguing contractions. However, the fluctuations in limb acceleration at task onset were greater for the suprathreshold TVR condition ( P < 0.01), but were not different between the subthreshold TVR and no-vibration conditions ( P ≥ 0.22). Furthermore, the difference in the SD of limb acceleration between the no-vibration and vibration conditions was correlated with the difference in time to failure for the no-vibration and subthreshold TVR conditions ( P = 0.03; r2 = 0.22), but not for the no-vibration and suprathreshold TVR conditions ( P = 0.90; r2 = 0.001). These findings indicate that prolonged vibration reduced the time to failure of a sustained contraction when subjects maintained limb position, suggesting that peripheral inputs to the motor neuron pool play a significant role in sustaining a contraction during tasks that require active control of limb position.


Author(s):  
Xin Ye ◽  
Robert J. Benton ◽  
William M. Miller ◽  
Sunggun Jeon ◽  
Jun Seob Song

2000 ◽  
Vol 83 (4) ◽  
pp. 2030-2039 ◽  
Author(s):  
Andrew E. Graves ◽  
Kurt W. Kornatz ◽  
Roger M. Enoka

The purpose of this study was to determine the effect of age on the ability to exert steady forces and to perform steady flexion movements with the muscles that cross the elbow joint. An isometric task required subjects to exert a steady force to match a target force that was displayed on a monitor. An anisometric task required subjects to raise and lower inertial loads so that the angular displacement around the elbow joint matched a template displayed on a monitor. Steadiness was measured as the coefficient of variation of force and as the normalized standard deviation of wrist acceleration. For the isometric task, steadiness as a function of target force decreased similarly for old adults and young adults. For the anisometric task, steadiness increased as a function of the inertial load and there were significant differences caused by age. Old adults were less steady than young adults during both shortening and lengthening contractions with the lightest loads. Furthermore, old adults were least steady when performing lengthening contractions. These behaviors appear to be associated with the patterns of muscle activation. These results suggest that different neural strategies are used to control isometric and anisometric contractions performed with the elbow flexor muscles and that these strategies do not change in parallel with advancing age.


1996 ◽  
Vol 76 (6) ◽  
pp. 586-600 ◽  
Author(s):  
Steven L Wolf ◽  
Richard L Segal ◽  
Pamela A Catlin ◽  
Julie Tschorn ◽  
Tina Raleigh ◽  
...  

2002 ◽  
Vol 88 (6) ◽  
pp. 3087-3096 ◽  
Author(s):  
Sandra K. Hunter ◽  
Daphne L. Ryan ◽  
Justus D. Ortega ◽  
Roger M. Enoka

Endurance time, muscle activation, and mean arterial pressure were measured during two types of submaximal fatiguing contractions that required each subject to exert the same net muscle torque in the two tasks. Sixteen men and women performed isometric contractions at 15% of the maximum voluntary contraction (MVC) force with the elbow flexor muscles, either by maintaining a constant force while pushing against a force transducer (force task) or by supporting an equivalent inertial load while maintaining a constant elbow angle (position task). The endurance time for the force task (1402 ± 728 s) was twice as long as that for the position task (702 ± 582 s, P < 0.05), despite a similar reduction in the load torque at exhaustion for each contraction. The rate of increase in average electromyographic activity (EMG, % peak MVC value) for the elbow flexor muscles was similar for the two tasks. However, the average EMG was greater at exhaustion for the force task (22.4 ± 1.2%) compared with the position task (14.9 ± 1.0%, P < 0.05). In contrast, the rates of increase in the mean arterial pressure, the rating of perceived exertion, anterior deltoid EMG, and fluctuations in motor output (force or acceleration) were greater for the position task compared with the force task ( P < 0.05). Furthermore, the rate of bursts in EMG activity, which corresponded to the transient recruitment of motor units, was greater for the brachialis muscle during the position task. These results indicate that the briefer endurance time for the position task was associated with greater levels of excitatory and inhibitory input to the motor neurons compared with the force task.


2016 ◽  
Vol 9 (1) ◽  
pp. 19-22
Author(s):  
Sumit Kalra ◽  
◽  
Nidhi Kalra ◽  
Davinder K. Gaur ◽  
Savita Tamaria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document