isometric contractions
Recently Published Documents


TOTAL DOCUMENTS

682
(FIVE YEARS 69)

H-INDEX

63
(FIVE YEARS 4)

Author(s):  
Brooke Davidson ◽  
Avery Hinks ◽  
Brian H. Dalton ◽  
Ryota Akagi ◽  
Geoffrey A. Power

Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.


2021 ◽  
pp. 003151252110609
Author(s):  
Anne Z. Beethe ◽  
Shawn D. Flanagan ◽  
Mita Lovalekar ◽  
Lee E Fisher ◽  
Bradley C. Nindl ◽  
...  

The underlying mechanism(s) of the Bilateral Deficit (BLD) phenomenon is without consensus. Methodological inconsistencies across prior works may be an important source of equivocal results and interpretations. Based on repeatability problems with the BLD measure and maximal force definition, the presence or absence of the BLD phenomenon is altered, shifting conclusions of its mechanistic cause. Our purpose in this study was to examine methodological inconsistencies in applying the BLD measure to establish optimal methods for evaluating the underlying mechanism. Eleven healthy participants engaged in one familiarity and five test sessions, completing bilateral and unilateral elbow maximal voluntary isometric contractions. We defined maximal force by averaged and absolute peak and plateau values. BLD was evident if the bilateral index (BI), the ratio of the bilateral over summed unilateral forces, was statistically different from zero. We addressed interclass correlations (ICC), Chronbach’s α, standard error of the mean, and minimal detectable change between and within sessions for all force measures and BI. We evaluated all combinations of sessions (i.e., 1–2, 3–5, 5–6) and maximal forces to establish the optimal number of sessions to achieve reliability. BLD was present for test sessions, but not for familiarization. All measures of maximal force were highly reliable between and within sessions (ICC(2,1) ≥ .895). BI was only considered significantly reliable in sessions 3–5 ( p < .027), defined by absolute and average plateau forces, but reliability was still quantifiably poor (absolute: ICC(2,1) = .392; average: ICC(2,1) = .375). These results demonstrate that high force reliability within and between sessions does not translate to stable and reliable BI, potentially exposing the lack of any defined BLD mechanism.


Author(s):  
Tyler Thomas Henderson ◽  
Jacob R Thorstensen ◽  
Steven Morrison ◽  
Murray G Tucker ◽  
Justin J Kavanagh

Although there is evidence that 5-HT acts as an excitatory neuromodulator to enhance maximal force generation, it is largely unknown how 5-HT activity influences the ability to sustain a constant force during steady-state contractions. A total of 22 healthy individuals participated in the study, where elbow flexion force was assessed during brief isometric contractions at 10% maximal voluntary contraction (MVC), 60% MVC, MVC, and during a sustained MVC. The selective serotonin reuptake inhibitor, paroxetine, suppressed physiological tremor and increased force steadiness when performing the isometric contractions. In particular, a main effect of drug was detected for peak power of force within the 8-12 Hz range (p = 0.004) and the coefficient of variation (CV) of force (p < 0.001). A second experiment was performed where intermittent isometric elbow flexions (20% MVC sustained for 2 min) were repeatedly performed so that serotonergic effects on physiological tremor and force steadiness could be assessed during the development of fatigue. Main effects of drug were once again detected for peak power of force in the 8-12 Hz range (p = 0.002) and CV of force (p = 0.003), where paroxetine suppressed physiological tremor and increased force steadiness when the elbow flexors were fatigued. The findings of this study suggest that enhanced availability of 5-HT in humans has a profound influence of maintaining constant force during steady state contractions. The action of 5-HT appears to suppress fluctuations in force regardless of the fatigue state of the muscle.


Author(s):  
Jiayu Shi ◽  
Daiki Watanabe ◽  
Masanobu Wada

This study was conducted to examine the effects of an acute bout of vigorous isometric contractions on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ until the force was reduced to ~50% of the initial force. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. The stimulation resulted in a decrease in the titin-based passive force. The amounts of fragmented titin were unchanged by the stimulation. Protein kinase Cα-treatment increased the passive force in stimulated fibers to resting levels. The stimulation had no effect on the maximum Ca2+-activated force (max Ca2+ force) at a sarcomere length (SL) of 2.4 μm and decreased myofibrillar (my)-Ca2+ sensitivity at 2.6-μm SL. Stretching the SL to 3.0 μm led to the augmentation of the max Ca2+ force and my-Ca2+ sensitivity in both rested and stimulated fibers. For the max Ca2+ force, the extent of the increase was smaller in stimulated than in rested fibers, whereas for my-Ca2+ sensitivity, it was higher in stimulated than in rested fibers. These results suggest that vigorous isometric contractions decrease the titin-based passive force, possibly because of a reduction in phosphorylation by protein kinase Cα, and that the decreased titin stiffness may contribute, at least in part, to muscle fatigue.


Author(s):  
Patricio A. Pincheira ◽  
Ben W. Hoffman ◽  
Andrew G. Cresswell ◽  
Timothy J. Carroll ◽  
Nicholas A. T. Brown ◽  
...  

2021 ◽  
Vol 53 (8S) ◽  
pp. 167-167
Author(s):  
Stephanie Sontag ◽  
Alex Olmos ◽  
Trent Herda ◽  
Philip Gallagher ◽  
Andrew Fry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document