Calculating the internodal transmissibilities using finite analytic method and its application for multi-phase flow in heterogeneous porous media

Author(s):  
X.-L. Zheng ◽  
Z.-F. Liu ◽  
X.-H. Wang ◽  
A.-F. Shi
2021 ◽  
Author(s):  
R. Soltanmohammadi ◽  
S. Iraji ◽  
T. Rodrigues De Almeida ◽  
E. Ruidiaz Munoz ◽  
A. Ricardo Fioravanti ◽  
...  

Author(s):  
Zoë Penko ◽  
Yaofa Li ◽  
Diogo Bolster ◽  
Kenneth T. Christensen

Multi-phase flow and transport in porous media is prevalent in a wide range of challenging fluid mechanics problems related to sustainability, energy, and the environment. Accurate prediction of the displacement and interaction of such flows is vital in addressing these problems. In particular it is critical to understand the small- or pore-scale flow and its spatial and temporal evolution, which can impact behaviors at system scales in a nontrivial manner. Intermittency is a phenomenon currently observed in numerical and experimental studies of single-phase flow (Anna et al., n.d.; Morales et al., n.d.), but the case of multi-phase flow has yet to receive much study due to challenges faced in both simulations and experiments. The underlying physics of spreading, mixing, and interfacial processes must be understood for accurate predictions of transport in multi-phase flow systems. Therefore, a comprehensive understanding of multi-phase flow at these very small scales is necessary in the development of accurate system-scale prediction models. We present results from a coordinated numerical and experimental study of intermittency effects over a range of viscous and inertial flow regimes in single- and multi-phase flows in 2D heterogeneous micromodels to quantify Lagrangian flow statistics to better inform pore-scale models. The applicability of different modeling frameworks such as the correlated-continuous time random walk is tested by studying statistics of particle trajectories obtained by particle tracking velocimetry (PTV) measurements and Lattice Boltzmann simulations from single- and multi-phase flows. The results make particular note of the influence of the pore Reynolds number (Re) and inertial effects on intermittency, and compare these effects in the two flow regimes.


2015 ◽  
Vol 114 (2) ◽  
pp. 581-600 ◽  
Author(s):  
P. Kunz ◽  
I. M. Zarikos ◽  
N. K. Karadimitriou ◽  
M. Huber ◽  
U. Nieken ◽  
...  

2020 ◽  
Vol 60 (2) ◽  
pp. 672
Author(s):  
Mojtaba Seyyedi ◽  
Ausama Giwelli ◽  
Cameron White ◽  
Lionel Esteban ◽  
Michael Verrall ◽  
...  

Impacts of fluid–rock geochemical reactions occurring during CO2 injection into underground formations, including CO2 geosequestration, on porosity and single-phase permeability are well documented. However, their impacts on pore structure and multi-phase flow behaviour of porous media and, therefore, on CO2 injectivity and residual trapping potential, are yet unknown. We found that CO2-saturated brine–rock interactions in a carbonate rock led to a decrease in the sweep efficiency of the non-wetting phase (gas) during primary drainage. Furthermore, they led to an increase in the relative permeability of the non-wetting phase, a decrease in the relative permeability of the wetting phase (brine) and a reduction in the residual trapping potential of the non-wetting phase. The impacts of reactions on pore structure shifted the relative permeability cross-point towards more water-wet condition. Finally, calcite dissolution caused a reduction in capillary pressure of the used carbonate rock. For CO2 underground injection applications, such changes in relative permeabilities, residual trapping potential of the non-wetting phase (CO2) and capillary pressure would reduce the CO2 storage capacity and increase the risk of CO2 leakage.


Sign in / Sign up

Export Citation Format

Share Document