Cavity expansion in strain hardening frictional soils under drained condition

Author(s):  
S.L. Chen ◽  
Y.N. Abousleiman
1991 ◽  
Vol 58 (1) ◽  
pp. 7-10 ◽  
Author(s):  
M. J. Forrestal ◽  
N. S. Brar ◽  
V. K. Luk

We developed engineering models that predict forces and penetration depth for long, rigid rods with spherical noses and rate-independent, strain-hardening targets. The spherical cavity expansion approximation simplified the target analysis, so we obtained closed-form penetration equations that showed the geometric and material scales. To verify our models, we conducted terminal-ballistic experiments with three projectile geometries made of maraging steel and 6061-T651 aluminum targets. The models predicted penetration depths that were in good agreement with the data for impact velocities between 0.3 and 1.0 km/s.


2013 ◽  
Vol 634-638 ◽  
pp. 2781-2786 ◽  
Author(s):  
Zhi Gang Jiang ◽  
Dian Yi Song ◽  
Fei Liu

A finite cylindrical cavity expansion model for metal targets was proposed in consideration of the lateral free boundary and strain-hardening effect. Analytical solutions of radial pressure on the cavity wall were obtained. An engineering model for the penetration of rigid sharp-nosed projectiles into thick cylindrical metal targets with finite radius was developed. The influence of the radius ratio of target to projectile on penetration depth was studied. The present engineering model has good agreement with ballistic experiments and numerical simulation. The influence of the lateral free boundary of target on penetration depth needs to be considered for radius ratio of target to projectile less than 20.


1991 ◽  
Vol 58 (2) ◽  
pp. 334-340 ◽  
Author(s):  
V. K. Luk ◽  
D. E. Amos

We developed models for the dynamic expansion of cylindrical cavities from zero initial radii for compressible, elastic-plastic, rate-independent materials with powerlaw strain-hardening. Results from cavity-expansion models were used to derive perforation models to predict residual velocities and ballistic limits for rigid, conicalnose projectiles perforating strain-hardening target plates. We compared the numerical results from models for incompressible and compressible materials to show the effect of compressibility. To verify the models, we also compared the model predictions of residual velocities and ballistic limits with the data from terminal-ballistic experiments with tungsten projectiles impacting 5083-H131 aluminum armor plates at normal incidence. Very good agreement was obtained for impact velocities between 200 and 1,200 m/s and 12.7, 50.8, and 76.2-mm thick targets.


1991 ◽  
Vol 58 (1) ◽  
pp. 1-6 ◽  
Author(s):  
V. K. Luk ◽  
M. J. Forrestal ◽  
D. E. Amos

We developed models for the dynamic expansion of spherical cavities from zero initial radii for elastic-plastic, rate-independent materials with power-law strain hardening. The models considered the material as incompressible and compressible. For an incompressible material, we obtained closed-form solutions, whereas the compressible results required the numerical solution of differential equations. A comparison of the numerical results from both models showed the effect of compressibility.


2017 ◽  
Vol 9 (2) ◽  
pp. 199-225 ◽  
Author(s):  
Joakim Johnsen ◽  
Jens Kristian Holmen ◽  
Thomas L Warren ◽  
Tore Børvik

In this article, we investigate the results obtained using different constitutive models for the solution of the cylindrical cavity expansion problem under plane strain conditions. The cylindrical cavity expansion solutions are employed with the cylindrical cavity expansion approximation to obtain ballistic limit and residual velocities for ductile metals perforated by rigid projectiles. Many of the previously developed cylindrical cavity expansion approximations use simplified constitutive models. However, in the present work, we first extend the cylindrical cavity expansion theory with the Voce strain hardening rule, before we utilize three different strain hardening constitutive models in cylindrical cavity expansion calculations to predict ballistic limit and residual velocities of aluminum and steel target plates struck by rigid projectiles. The results show that when strain hardening is accurately represented by the constitutive models until necking in a uniaxial tension test, all cylindrical cavity expansion models predict ballistic limit velocities that are close to the experimental data.


2004 ◽  
Vol 72 (6) ◽  
pp. 887-898 ◽  
Author(s):  
Rami Masri ◽  
David Durban

The elastoplastic field induced by a self-similar dynamic expansion of a pressurized spherical cavity is investigated for the compressible Mises solid. The governing system consists of two ordinary differential equations for two stress components where radial velocity and density are known functions of these stresses. Numerical illustrations of radial profiles of field variables are presented for several metals. We introduce a new solution based on expansion in powers of the nondimensionalized cavity expansion velocity, for both elastic/perfectly plastic response and strain-hardening behavior. A Bernoulli-type solution for the dynamic cavitation pressure is obtained from the second-order expansion along with a more accurate third-order solution. These solutions are mathematically closed and do not need any best fit procedure to numerical data, like previous solutions widely used in the literature. The simple solution for elastic/perfectly plastic materials reveals the effects of elastic-compressibility and yield stress on dynamic response. Also, an elegant procedure is suggested to include strain-hardening in the simple elastic/perfectly plastic solution. Numerical examples are presented to demonstrate the validity of the approximate solutions. Applying the present cavitation model to penetration problems reveals good agreement between analytical predictions and penetration depth tests.


Géotechnique ◽  
1986 ◽  
Vol 36 (3) ◽  
pp. 349-358 ◽  
Author(s):  
J. P. Carter ◽  
J. R. Booker ◽  
S. K. Yeung

Géotechnique ◽  
2021 ◽  
pp. 1-20
Author(s):  
John P. Carter ◽  
Hai-Sui Yu

The problem of cavity expansion from zero radius has no characteristic length and therefore possesses a similarity solution, in which the cavity pressure remains constant and the continuing deformation is geometrically self-similar. In this case, the incremental velocity approach first used by Hill (1950) to analyze cavity expansion in Tresca materials can be extended to derive a solution for limiting pressure of cavity expansion in other types of material. In this article, a rigorous semi-analytical solution is derived, following Hill's incremental velocity method, for the expansion of cavities from zero initial radius in cohesive-frictional soils with limited dilation. In particular, the radius of the elastic-plastic interface c is used in this article as the time scale and the solution for the limit pressure has been presented. Solutions are evaluated for a number of cases representative of a range of cohesive-frictional and dilatant soils. A comparison is also made between the solutions presented here and previous solutions for cohesive-frictional soils that have unlimited (on-going) plastic dilation. In particular, the influence of limited plastic dilation on the cavity limit pressure is identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document