ballistic limit
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 49)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Luca Landi ◽  
Eckart Uhlmann ◽  
Robert Hoerl ◽  
Simon Thom ◽  
Giuseppe Gigliotti ◽  
...  

Abstract Machine guards provide protection against ejection of parts during operation, such as chips or workpiece fragments. They are considered safe if the impact resistance is at least as high as the resulting projectile energy in the worst case of damage. To protect the machine operator, the impact resistance of machine guards is determined according to ISO standards. The bisection method can be used to determine the impact resistance through impact tests. However, this method is inaccurate for a small number of impact tests and does not provide an indication of uncertainties in the determination. Moreover, the result of testing is validated in different ways depending from the standard utilized for testing.Relevant uncertainties affecting impact testing and a new probabilistic approach for assessing the impact resistance using the Recht & Ipson equation are presented. With multiple impact tests at different initial velocities a Recht & Ipson best-fit curve and a confidence interval for a ballistic limit can be obtained, which is used to determine the impact resistance by defining a velocity reduction coefficient. This method can be applied to any machine guard made of ductile material. This paper validates the Recht & Ipson method by performing impact tests with a standardized 2.5 kg projectile on polycarbonate sheets of different thicknesses. Determination of the ballistic limit showed good agreement with experimental results. With the ballistic limits, the velocity reduction coefficients have been found to determine the impact resistances. Therefore, an alternative method for standardized tests to determine the impact resistance was found.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 281
Author(s):  
Navya Gara ◽  
Velmurugan Ramachandran ◽  
Jayaganthan Rengaswamy

The present work investigates the impact behaviour of Al 2024-T3 alloy using FEM analysis performed through LS DYNA software. Johnson–Cookvisco-plastic model is used to study the ballistic impact resistance of target Al alloy impacted by a rigid steel cylindrical projectile. The tensile properties of Al 2024-T3 alloy reported in the literature are used to estimate the J.C. model parameters. Impact velocities within a range of 50 m/s–900 m/s of the projectile were triggered onto Al alloy target thicknesses in the range of 3.18 mm–6.35 mm. To understand the accuracy of the FEM model, an analytical model proposed by Chen et al. for blunt-nosed projectiles on the ductile targets was used to compare with the obtained residual velocities from FEM simulations. It was observed that the ballistic limit velocities have led to the highest energy absorption behaviour of the Al 2024-T3 alloy for an impact velocity of 183 m/s and a 6.35 mm target thickness. The ballistic limit velocities have increased from 97 m/s to 183 m/s for the considered thickness range of 3.18 mm–6.35 mm. The impact failure was observed to have a petalling formation with two petals for thinner targets, while a full-fledged plugging with no petal formation for the 4.00 mm and 6.35 mm target thicknesses was observed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4268
Author(s):  
Maciej Klosak ◽  
Rafael Santiago ◽  
Tomasz Jankowiak ◽  
Amine Bendarma ◽  
Alexis Rusinek ◽  
...  

In this paper, perforation experiments were carried out and numerically modelled in order to analyze the response of 2024-T3 aluminum alloy plates under different initial temperatures T0. This alloy has a particular relevance since it is widely used as a structural component in aircrafts, but it is also interesting for other sectors of industry. A gas gun projectile launcher was used to perform impacts within initial velocities V0 from 40 m/s to 120 m/s and at temperatures varying from 293 K to 573 K. A temperature softening of the material was observed which was manifested in the reduction in the ballistic limit by 10% within the temperature range studied. Changes in the material failure mode were also observed at different test conditions. Additionally, a finite element model was developed to predict the material response at high velocities and to confirm the temperature softening that was observed experimentally. An optimization of the failure criterion resulted in a reliable model for such mild aluminum alloys. The results reported here may be used for different applications in the automotive and military sectors.


2021 ◽  
pp. 004051752110155
Author(s):  
Ying Ma ◽  
Mario Dippolito ◽  
Yuyang Miao ◽  
Youqi Wang

This paper investigates the failure mechanism and fabric ballistic performance of real-size multi-layer 2D woven fabrics impacted by sharp-edge fragment simulating projectile (FSP). First, the relations between digital fiber shear force and bending rigidity are established under the modified digital element approach (DEA) framework. Then, a systematic parametric study was carried out on the ballistic impact of a 4-inch-long single yarn and 4-inch by 4-inch 2D woven fabric at near fiber level to solve for the relations of digital fiber moment of inertia and ballistic limit. The results show that for the same number of digital fibers per yarn model, the simulated ballistic limits are in direct proportion to digital fiber moment of inertia. The increase of the number of digital fibers per yarn, however, decreases the digital fiber moment of inertia effect on ballistic limits. Second, the 1- to 28-layer real-size 2D woven Kevlar KM2 fabrics are simulated at filament level against FSP on the cluster to estimate the V50 zone. The perforation process and failure mechanism of 4-layer fabric is investigated and analyzed in detail. The simulation results demonstrate the deformed fabric shape with respect to time and the damage modes at the impact area. Numerical results are compared with standard ballistic test results.


2021 ◽  
Vol 2021 (2) ◽  
pp. 12-29
Author(s):  
Ken Wen ◽  
De-ning Di ◽  
Xiao-wei Chen

Abstract In the shatter regime of a Whipple shield, a large central fragment makes a significant contribution to the damage-causing capacity of the debris cloud. Herein we present a feasible scheme for the identification and measurement of this large central fragment and propose an alternative approach to the ballistic limit equation (BLE) for the Whipple shield, deducing an alternative ballistic limit in the shatter regime based on the large central fragment’s characteristics. This alternative BLE is compared with the phenomenological Whipple BLE, the JSC Whipple BLE and the Ryan curve. Our alternative BLE, modified at the incipient fragmentation and completed fragmentation point, is shown to agree well with experimental results.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1239
Author(s):  
Jesuarockiam Naveen ◽  
Mohammad Jawaid ◽  
Kheng Lim Goh ◽  
Degalhal Mallikarjuna Reddy ◽  
Chandrasekar Muthukumar ◽  
...  

The development of armour systems with higher ballistic resistance and light weight has gained considerable attention as an increasing number of countries are recognising the need to build up advanced self-defence system to deter potential military conflicts and threats. Graphene is a two dimensional one-atom thick nanomaterial which possesses excellent tensile strength (130 GPa) and specific penetration energy (10 times higher than steel). It is also lightweight, tough and stiff and is expected to replace the current aramid fibre-based polymer composites. Currently, insights derived from the study of the nacre (natural armour system) are finding applications on the development of artificial nacre structures using graphene-based materials that can achieve high toughness and energy dissipation. The aim of this review is to discuss the potential of graphene-based nanomaterials with regard to the penetration energy, toughness and ballistic limit for personal body armour applications. This review addresses the cutting-edge research in the ballistic performance of graphene-based materials through theoretical, experimentation as well as simulations. The influence of fabrication techniques and interfacial interactions of graphene-based bioinspired polymer composites for ballistic application are also discussed. This review also covers the artificial nacre which is shown to exhibit superior mechanical and toughness behaviours.


Sign in / Sign up

Export Citation Format

Share Document