penetration depths
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 51)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huawei Yang ◽  
Ji-wei Luo ◽  
Jie Zhang ◽  
Pei-wen Zhang

Investigation on penetration into concrete targets is of great importance as concrete is widely used as the fundamental construction material. To achieve a more accurate prediction of penetration depths of concrete targets, a further study was conducted to explore the entrance effect by using AUTODYN hydrocode in this study. The numerical results on both deceleration-time history and depth of penetration of projectiles are in good agreement with experimental data, which demonstrate the feasibility of the numerical model in these conditions. A new target model was established with a predrilled hole around the symmetry axis to simulate the entrance effect of the crater phase on the penetration process. Compared with the regular target, the predrilled target enters the peak of acceleration earlier, leading to the reduction of the depth of penetration. In addition, simulation results indicated that nose shape significantly influenced crater region depth, while the depth was independent of the impact velocity and the target strength. Based on the simulation of entrance effect, a modified formula of penetration depth has been proposed and validated in terms of different nose shapes. The crater region depths obtained from the simulations can improve the accuracy of the predictions of the penetration depths for the penetration of concrete targets.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7246
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Jiří Čapek ◽  
Filip Průša

High entropy alloys (HEAs) are materials of great application potential and which have been extensively studied during the last two decades. As the number of possible element combinations is enormous, model materials representing certain groups of HEAs are used for the description of microstructure, properties, and deformation mechanisms. In this study, the microstructure and mechanical properties of the so-called Cantor alloy composed of Co, Cr, Fe, Mn, and Ni in equiatomic ratios prepared by various techniques (casting, melt-spinning, spark plasma sintering) were examined. The research focused on the indentation measurements, namely, the indentation size effect describing the evolution of the hardness with penetration depth. It was found that the standard Nix–Gao model can be used for this type of alloy at higher penetration depths and its parameters correlate well with microstructural observations. The Nix–Gao model deviates from the measured data at the submicrometer range and the applied modification affords additional information on the deformation mechanism.


Author(s):  
Mikhail Korpusenko ◽  
Farshid Manoocheri ◽  
Olli-Pekka Kilpi ◽  
Aapo Varpula ◽  
Markku Kainlauri ◽  
...  

Abstract We investigate the Predictable Quantum Efficient Detector (PQED) in the visible and near-infrared wavelength range. The PQED consists of two n-type induced junction photodiodes with Al2O3 entrance window. Measurements are performed at the wavelengths of 488 nm and 785 nm with incident power levels ranging from 100 µW to 1000 µW. A new way of presenting the normalized photocurrents on a logarithmic scale as a function of bias voltage reveals two distinct negative slope regions and allows direct comparison of charge carrier losses at different wavelengths. The comparison indicates mechanisms that can be understood on the basis of different penetration depths at different wavelengths (0.77 μm at 488 nm and 10.2 μm at 785 nm). The difference in the penetration depths leads also to larger difference in the charge-carrier losses at low bias voltages than at high voltages due to the voltage dependence of the depletion region.


2021 ◽  
Author(s):  
Gladimir V. G. Baranoski ◽  
Mark Iwanchyshyn ◽  
Bradley Kimmel ◽  
Petri Varsa ◽  
Spencer Van Leeuwen

2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Samuel Favrichon ◽  
Catherine Prigent ◽  
Carlos Jimenez

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 707
Author(s):  
Xiaolan Xiao ◽  
Jiayun Deng ◽  
Qiang Xiong ◽  
Qiusheng Yan ◽  
Zhengtao Wu ◽  
...  

Si3N4 ceramic is generally recognized as being difficult to machine due to its hardness and brittleness. It is necessary to control the normal load applied and the machined depth of the abrasive particles in order to eliminate surface/subsurface damage and defects during the grinding or polishing. In this study, scratch experiments were conducted on the polished surface of Si3N4 specimens to investigate the brittle–ductile transformation and the evolution of material removal mechanisms. In addition, the cracking behaviour of Si3N4 ceramic was characterized by indentation tests. The Vickers indentation produced cracks that exhibited good developmental integrity and geometric symmetry. The results indicate that the scratch track can be divided into three stages: the ductile regime, the brittle–ductile coexisting stage, and the brittle fracture regime. The critical loads and the corresponding penetration depths of cracking occurrence in Si3N4 were recorded. The material removal of Si3N4 ceramic was primary attributed to ductile regime removal when the load was less than 9.8 N. Microcrack initiation on the subsurface was observed when the penetration depth of the scratch tip reached 8 μm or the depth of the indentation tip reached 3.2 μm. Microcracks expanded rapidly as the load was further increased, resulting in a brittle fracture of the Si3N4 ceramic.


Author(s):  
Lydia M. Zopf ◽  
Patrick Heimel ◽  
Stefan H. Geyer ◽  
Anoop Kavirayani ◽  
Susanne Reier ◽  
...  

AbstractTumor vasculature and angiogenesis play a crucial role in tumor progression. Their visualization is therefore of utmost importance to the community. In this proof-of-principle study, we have established a novel cross-modality imaging (CMI) pipeline to characterize exactly the same murine tumors across scales and penetration depths, using orthotopic models of melanoma cancer. This allowed the acquisition of a comprehensive set of vascular parameters for a single tumor. The workflow visualizes capillaries at different length scales, puts them into the context of the overall tumor vessel network and allows quantification and comparison of vessel densities and morphologies by different modalities. The workflow adds information about hypoxia and blood flow rates. The CMI approach includes well-established technologies such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US), and modalities that are recent entrants into preclinical discovery such as optical coherence tomography (OCT) and high-resolution episcopic microscopy (HREM). This novel CMI platform establishes the feasibility of combining these technologies using an extensive image processing pipeline. Despite the challenges pertaining to the integration of microscopic and macroscopic data across spatial resolutions, we also established an open-source pipeline for the semi-automated co-registration of the diverse multiscale datasets, which enables truly correlative vascular imaging. Although focused on tumor vasculature, our CMI platform can be used to tackle a multitude of research questions in cancer biology.


Sign in / Sign up

Export Citation Format

Share Document