Analytical solution to axisymmetric consolidation of unsaturated soil stratum under equal strain condition incorporating smear effects

2018 ◽  
Vol 42 (15) ◽  
pp. 1890-1913 ◽  
Author(s):  
Liem Ho ◽  
Behzad Fatahi
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ming-hua Huang ◽  
Chang Lv ◽  
Zheng-lin Zhou

The consolidation of soil is one of the most common phenomena in geotechnical engineering. Previous studies for the axisymmetric consolidation of unsaturated soil have usually idealized the boundary conditions as fully drained and absolutely undrained, but the boundaries of unsaturated soil are actually impeded drainage in most practical situations. In this study, we present a general analytical solution for predicting the axisymmetric consolidation behavior of unsaturated soil that incorporates impeded drainage boundary conditions in both the radial and vertical directions simultaneously. The impeded drainage boundary is modeled using the third kind boundary, and it can also realize fully drained and absolutely undrained ones by changing the drainage parameter. A general analytical solution is developed to predict the excess pore-air and pore-water pressures as well as the average degree of consolidation in an unsaturated soil stratum using the common methods of eigenfunction expansion and Laplace transform. The newly developed solution is expressed in the product of the terms of time, depth, and radius, which are derived using Laplace transform, usual Fourier, and Fourier-Bessel series, respectively. The eigenfunctions and eigenvalues are evaluated from the impeded drainage boundaries in both radial and depth dimensions. Then, the correctness of the proposed analytical solution is verified against the existing analytical solution for the case of traditional boundaries and against the finite difference solution for the case of general impeded drainage boundaries, and excellent agreements are obtained. Finally, the axisymmetric consolidation behavior of unsaturated soil involving impeded drainage boundaries is demonstrated and analyzed, and the effects of the drainage parameters are discussed. The results indicate that the larger drainage parameter generally expedites the dissipations of the excess pore pressures and further promotes the soil settling process. As the drainage parameter increases, its influence gradually diminishes and even can be neglected when it is larger than 100. The general analytical solution and findings of this study can help for better understanding the axisymmetric consolidation behavior of the unsaturated soil stratum in the ground improvement project with vertical drains as well as the gas-oil gravity drainage mechanism in the naturally fractured reservoirs.


Processes ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Minghua Huang ◽  
Dun Li

The consolidation process of soil stratum is a common issue in geotechnical engineering. In this paper, the two-dimensional (2D) plane strain consolidation process of unsaturated soil was studied by incorporating vertical impeded drainage boundaries. The eigenfunction expansion and Laplace transform techniques were adopted to transform the partial differential equations for both the air and water phases into two ordinary equations, which can be easily solved. Then, the semi-analytical solutions for the excess pore-pressures and the soil layer settlement were derived in the Laplace domain. The final results in the time domain could be computed by performing the numerical inversion of Laplace transform. Furthermore, two comparisons were presented to verify the accuracy of the proposed semi-analytical solutions. It was found that the semi-analytical solution agreed well with the finite difference solution and the previous analytical solution from the literature. Finally, the 2D plane strain consolidation process of unsaturated soil under different drainage efficiencies of the vertical boundaries was illustrated, and the influences of the air-water permeability ratio, the anisotropic permeability ratio and the spacing-depth ratio were investigated.


Sign in / Sign up

Export Citation Format

Share Document