consolidation behavior
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Neal D. Gaffin ◽  
Caen Ang ◽  
Justin L. Milner ◽  
Kelsa B. Palomares ◽  
Steven J. Zinkle

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1486
Author(s):  
Martin Dominik ◽  
Barbora Vraníková ◽  
Petra Svačinová ◽  
Jan Elbl ◽  
Sylvie Pavloková ◽  
...  

The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs—Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®—were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ming-hua Huang ◽  
Chang Lv ◽  
Zheng-lin Zhou

The consolidation of soil is one of the most common phenomena in geotechnical engineering. Previous studies for the axisymmetric consolidation of unsaturated soil have usually idealized the boundary conditions as fully drained and absolutely undrained, but the boundaries of unsaturated soil are actually impeded drainage in most practical situations. In this study, we present a general analytical solution for predicting the axisymmetric consolidation behavior of unsaturated soil that incorporates impeded drainage boundary conditions in both the radial and vertical directions simultaneously. The impeded drainage boundary is modeled using the third kind boundary, and it can also realize fully drained and absolutely undrained ones by changing the drainage parameter. A general analytical solution is developed to predict the excess pore-air and pore-water pressures as well as the average degree of consolidation in an unsaturated soil stratum using the common methods of eigenfunction expansion and Laplace transform. The newly developed solution is expressed in the product of the terms of time, depth, and radius, which are derived using Laplace transform, usual Fourier, and Fourier-Bessel series, respectively. The eigenfunctions and eigenvalues are evaluated from the impeded drainage boundaries in both radial and depth dimensions. Then, the correctness of the proposed analytical solution is verified against the existing analytical solution for the case of traditional boundaries and against the finite difference solution for the case of general impeded drainage boundaries, and excellent agreements are obtained. Finally, the axisymmetric consolidation behavior of unsaturated soil involving impeded drainage boundaries is demonstrated and analyzed, and the effects of the drainage parameters are discussed. The results indicate that the larger drainage parameter generally expedites the dissipations of the excess pore pressures and further promotes the soil settling process. As the drainage parameter increases, its influence gradually diminishes and even can be neglected when it is larger than 100. The general analytical solution and findings of this study can help for better understanding the axisymmetric consolidation behavior of the unsaturated soil stratum in the ground improvement project with vertical drains as well as the gas-oil gravity drainage mechanism in the naturally fractured reservoirs.


Author(s):  
Xingxing He ◽  
Yijun Chen ◽  
Yuan Li ◽  
Dongdong Guo ◽  
Qiang Xue ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
pp. 69-75
Author(s):  
Saber Haghgooye Shafagh ◽  
Shapour Jafargholinejad ◽  
Siyamak Javadian

The incorporation of 1 wt% hexagonal BN (hBN) into ZrB2–30 vol% SiC could noticeably better the fracture toughness, hardness, and consolidation behavior of this composite. This research intended to scrutinize the effects of various amounts of hBN (0–5 wt%) on different characteristics of ZrB2–SiC materials. The hot-pressing method under 10 MPa at 1900 °C for 120 min was employed to sinter all designed specimens. Afterward, the as-sintered samples were characterized using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and Vickers technique. The hBN addition up to 1 wt% improved relative density, leading to a near fully dense sample; however, the incorporation of 5 wt% of such an additive led to a composite containing more than 5% remaining porosity. The highest Vickers hardness of 23.8 GPa and fracture toughness of 5.7 MPa.m1/2 were secured for the sample introduced by only 1 wt% hBN. Ultimately, breaking large SiC grains, crack bridging, crack deflection, crack branching, and crack arresting were introduced as the chief toughening mechanisms in the ZrB2–SiC–hBN system.


Sign in / Sign up

Export Citation Format

Share Document