Differential roles of two major brain structures, mushroom bodies and central complex, forDrosophilamale courtship behavior

2006 ◽  
Vol 66 (8) ◽  
pp. 821-834 ◽  
Author(s):  
Takaomi Sakai ◽  
Toshihiro Kitamoto
1998 ◽  
Vol 5 (1) ◽  
pp. 78-89
Author(s):  
Colette Strambi ◽  
Myriam Cayre ◽  
David B. Sattelle ◽  
Roger Augier ◽  
Pierre Charpin ◽  
...  

The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain.


2015 ◽  
Vol 112 (43) ◽  
pp. E5854-E5862 ◽  
Author(s):  
Jean-Marc Devaud ◽  
Thomas Papouin ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz ◽  
Bernd Grünewald ◽  
...  

Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryan A. York ◽  
Allie Byrne ◽  
Kawther Abdilleh ◽  
Chinar Patil ◽  
Todd Streelman ◽  
...  

AbstractThe evolutionary diversification of animal behavior is often associated with changes in the structure and function of nervous systems. Such evolutionary changes arise either through alterations of individual neural components (“mosaically”) or through scaling of the whole brain (“concertedly”). Here we show that the evolution of a courtship behavior in Malawi cichlid fish is associated with rapid, extensive, and specific diversification of orosensory, gustatory centers in the hindbrain. We find that hindbrain volume varies significantly between species that build pit (depression) compared to castle (mound) type bowers and that this trait is evolving rapidly among castle-building species. Molecular analyses of neural activity via immediate early gene expression indicate a functional role for hindbrain structures during bower building. Finally, comparisons of bower building species in neighboring Lake Tanganyika suggest parallel patterns of neural diversification to those in Lake Malawi. Our results suggest that mosaic brain evolution via alterations to individual brain structures is more extensive and predictable than previously appreciated.


1998 ◽  
Vol 5 (1) ◽  
pp. 102-114 ◽  
Author(s):  
J. Douglas Armstrong ◽  
J. Steven de Belle ◽  
Zongsheng Wang ◽  
Kim Kaiser

Paired brain centers known as mushroom bodies are key features of the circuitry for insect associative learning, especially when evoked by olfactory cues. Mushroom bodies have an embryonic origin, and unlike most other brain structures they exhibit developmental continuity, being prominent components of both the larval and the adult CNS. Here, we use cell-type-specific markers, provided by the P{GAL4} enhancer trap system, to follow specific subsets of mushroom body intrinsic and extrinsic neurons from the larval to the adult stage. We find marked structural differences between the larval and adult mushroom bodies, arising as the consequence of large-scale reorganization during metamorphosis. Extensive, though incomplete, degradation of the larval structure is followed by establishment of adult specific α and β lobes. Kenyon cells of embryonic origin, by contrast, were found to project selectively to the adult γ lobe. We propose that the γ lobe stores information of relevance to both developmental stages, whereas the α and β lobes have uniquely adult roles.


2018 ◽  
Author(s):  
Ryan A. York ◽  
Allie Byrne ◽  
Kawther Abdhilleh ◽  
Chinar Patil ◽  
J. Todd Streelman ◽  
...  

AbstractThe evolutionary diversification of animal behavior is often associated with changes in the structure and function of nervous systems. Such evolutionary changes arise either through alterations of individual neural components (“mosaically”) or through scaling of the whole brain (“conceitedly”). Here we show that the evolution of a specific courtship behavior in Malawi cichlid fish, the construction of mating nests known as bowers, is associated with rapid, extensive, and specific diversification of orosensory, gustatory centers in the hindbrain. We find that hindbrain volume varies significantly between species that build pit (depression) compared to castle (mound) type bowers and that hindbrain features evolve rapidly and independently of phylogeny among castle-building species. Using immediate early gene expression, we confirmed a functional role for hindbrain structures during bower building. Comparisons of bower building species in neighboring Lake Tanganyika show patterns of neural diversification parallel to those in Lake Malawi. Our results suggest that mosaic brain evolution via alterations to individual brain structures is more extensive and predictable than previously appreciated.


Sign in / Sign up

Export Citation Format

Share Document