courtship behavior
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 88)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 76 (1) ◽  
Author(s):  
Ignacio Escalante ◽  
Damian O. Elias

Abstract Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts. This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alternative hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive behavior of one species of Neotropical Prionostemma harvestmen. These arachnids undergo autotomy frequently, do not regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Overall, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological damage and natural selection favors strategies that increase robustness. Significance statement In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors, however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts (tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids are able to withstand the loss of legs with no effects on reproduction.


2021 ◽  
Vol 70 (2) ◽  
pp. 83-86
Author(s):  
Stênio Italo Araújo Foerster ◽  
Welton Dionisio-da-Silva ◽  
Adriana Barbosa dos Santos ◽  
Cleide Maria Ribeiro de Albuquerque ◽  
André Felipe de Araújo Lira
Keyword(s):  

2021 ◽  
Author(s):  
Angelo Niosi ◽  
Nguyên Henry Võ ◽  
Punithavathi Sundar ◽  
Chloe Welch ◽  
Aliyah Penn ◽  
...  

The gut-brain axis may contribute to the pathophysiology of neurodevelopmental disorders, yet it is often unclear how risk genes associated with these disorders affect gut physiology in a manner that could impact microbial colonization. We addressed this question using Drosophila melanogaster with a null mutation in kismet, the ortholog of chromodomain helicase DNA-binding protein ( CHD ) family members CHD7 and CHD8. In humans, CHD7 and CHD8 are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms . We found kismet mutant flies have a significant increase in gastrointestinal transit time, indicating functional homology of kismet with CHD7/CHD8 in vertebrates. To measure gut tissue mechanics, we used a high-precision force transducer and length controller, capable of measuring forces to micro-Newton precision, which revealed significant changes in the mechanics of kismet mutant guts, in terms of elasticity, strain stiffening, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found kismet mutants have reduced diversity of gut microbiota at every taxonomic level and an increase in pathogenic taxa. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and measured courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of gut microbiome in the control strain reduced courtship activity. This result demonstrated that antibiotic treatment can have differential impacts on behavior that may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-brain axis to influence behavior.  Based on our results, we also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neuronal development.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2461
Author(s):  
Yi-Ni Li ◽  
En-Hua Hao ◽  
Han Li ◽  
Xiao-Hui Yuan ◽  
Peng-Fei Lu ◽  
...  

Sirex noctilio, a major forestry quarantine pest, has spread rapidly and caused serious harm. However, existing methods still need to be improved because its olfactory interaction mechanisms are poorly understood. In order to study the role of male-specific protein SnocOBP7 in the protein–ligand interactions, we selected it as the object of computational simulation and analysis. By docking it with 11 ligands and evaluating free binding energy decomposition, the three best binding ligands were found to be female sex pheromones ((Z)-7-heptacosene and (Z)-7-nonacosene) and symbiotic fungal volatiles ((−)-globulol). Binding mode analysis and computational alanine scanning suggested that five residues play key roles in the binding of each female sex pheromone to SnocOBP7, whereas two residues play key roles in (−)-globulol binding. Phe108 and Leu36 may be the crucial sites via which SnocOBP7 binds female sex pheromones, whereas Met40 may regulate the courtship behavior of males, and Leu61 may be related to mating and host finding. Our studies predicted the function of SnocOBP7 and found that the interaction between SnocOBP7 and pheromone is a complex process, and we successfully predicted its binding key amino-acid sites, providing a basis for the development of new prevention and control methods relying on female sex pheromones and symbiotic fungi.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1845
Author(s):  
Lei Zhong ◽  
Weimin Wang ◽  
Xiaojuan Cao

The release and sensation of sex pheromone play a role in the reproductive success of vertebrates including fish. Previous studies have shown that the weather loach Misgurnus anguillicaudatus perceives sex pheromones by olfaction to stimulate courtship behavior. It was speculated that weather loaches use smell to recognize intraspecific mates. However, the identification of loach pheromone receptor has not been reported. By comparative transcriptomic approach, we found that the olfactory receptor gene or114-1 was male-biasedly expressed in the olfactory epithelium of M. anguillicaudatus, M. bipartitus and the closely related species Paramisgurnus dabryanus. This sex-biased expression pattern implicated that or114-1 presumably encoded a sex pheromone receptor in loaches. M. bipartitus and P. dabryanus, like zebrafish, possess one or114-1 only. However, in M. anguillicaudatus, or114-1 has two members: Ma_or114-1a and Ma_or114-1b. Ma_or114-1a, not Ma_or114-1b, showed sex-differential expression in olfactory epithelium. Ma_or114-1b has base insertions that delayed the stop codon, causing the protein sequence length to be extended by 8 amino acids. Ma_or114-1a was subject to positive selection resulting in adaptive amino acid substitutions, which indicated that its ligand binding specificity has probably changed. This adaptive evolution might be driven by the combined effects of sexual selection and reinforcement of premating isolation between the sympatric loach species.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12266
Author(s):  
Hajar Faal ◽  
Peter J. Silk ◽  
Peter D. Mayo ◽  
Stephen A. Teale

Background Ibalia leucospoides (Hymenoptera: Ibaliidae) is a larval parasitoid that has been widely introduced as a biological control agent for the invasive woodwasp,Sirex noctilio (Hymenoptera: Siricidae) in the Southern Hemisphere. In this study, the courtship behavior and identificaion of sex pheromones are described for I. leucospoides under laboratory conditions. Methods For courtship behavior, both sexes were observed in a wire mesh observation cylinder (75 cm length ×10 cm diameter) for 15 minutes. The female body washes were analyzed using Gas Chromatography- Electroantennographic Detection (GC-EAD). Then the EAD-active compounds were tentatively identified using GC-Mass Spectrometry (GC-MS) and examined in olfactometer assays. Results The courtship behavior included rhythmic lateral movements, mounting, head-nodding cycles in males, and wing-fanning in females. GC-EAD analysis of female body washes with male antennae revealed seven compounds which elicited antennal responses, four of which are straight-chain alkanes (C23, C25, C26, and C27). The identities of these alkanes were confirmed by matching the retention times, mass spectra, and male antennal activity to those of commercially obtained chemicals. In olfactometer assays, a blend of the four straight-chain alkanes was attractive to I. leucospoides males, and there was no response to blends that lacked any of these four compounds. Female body wash was no more attractive than the four-component blend. The ratios of EAD-active components differ between hydrocarbon profiles from males and females. Conclusion This study is the first investigation of cuticular hydrocarbons in the family Ibaliidae. It provides evidence that the ubiquitous alkanes (C23, C25, C26, and C27) in sex-specific ratios attract I. leucospoides males.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nolwenn Fresneau ◽  
Ya-Fu Lee ◽  
Wen-Chen Lee ◽  
András Kosztolányi ◽  
Tamás Székely ◽  
...  

In a few species, males invest more than females in parental care while the females invest in mating competition and producing multiple broods for several mates. Species in the family Jacanidae are commonly used for studying this type of breeding system (called sex-role reversal), and previous studies found discrepancies and variation between species in the expected characteristics of reversed sex roles. Yet, a better understanding of sex role differences in breeding behavior in such species is crucial for disentangling possible evolutionary mechanisms leading to this peculiar breeding system. Sex-role reversal in the pheasant-tailed jacana Hydrophasianus chirurgus has been documented long time ago. Since the very early observation of this species, however, there was no attempt to provide a comprehensive and quantitative description of their breeding. This study aims to fill these knowledge gaps by investigating the sex role differences in the breeding behavior of pheasant-tailed jacanas, by observing and monitoring a breeding population in Taiwan. We focused on three main characteristics of sex-role reversal: (1) competition between females for access to males, such as agonistic and courtship behaviors, (2) polyandrous mating, and (3) male-only care. As expected, we found that females provide most of the territory defense toward conspecifics. Males also participated in agonistic behaviors, although less frequently than females. Furthermore, contrary to what was expected, we found that males spent more time than females on courtship behavior. Polyandrous females performed mating and laying sequentially with different mates but maintained the pair bonds simultaneously with multiple males. For the first time for the species, we could estimate that the average number of mates per female (i.e., degree of polyandry) was 2.4 and that at least 81.8% of the females in the population were polyandrous. Finally, our observations corroborated that brood care is predominantly provided by males, nevertheless females were also participating to some degree in brood attendance but never in direct care (i.e., brooding). This study highlights that some aspects of polyandrous breeding might deviate from stereotyped view on sex-role reversal, and stress the importance of further within species and comparative studies in order to fully understand the mechanisms leading to sex-role reversal.


2021 ◽  
Author(s):  
Marcus Canuto ◽  
F. Hernan Vargas ◽  
Cristiano Schetini de Azevedo ◽  
Yasmine Antonini

ABSTRACT Studies of territorial and courtship behavior are lacking for many tropical raptors. From 2006 to 2009, using observations that were not time-limited, we studied the territorial and courtship behaviors of the White-necked Hawk (Buteogallus lacernulatus) and the Mantled Hawk (Pseudastur polionotus) in Rio Doce State Park in eastern Brazil. We observed White-necked Hawks and Mantled Hawks engaged in aerial displays on 67 and 13 occasions, respectively. Display behaviors performed by White-necked Hawks were characterized by 1–4 undulations followed by aerial swoops and spirals. Territorial and/or courtship behaviors of Mantled Hawks were characterized by the male and female performing thermal or horizontal gliding together and diving in spirals while frequently emitting a series of long and short whistles. This study presents the first formal descriptions of the aerial territorial/courtship displays of these rare forest-dwelling raptors.


2021 ◽  
Author(s):  
Matthew R Meiselman ◽  
Michael E. Adams ◽  
Anindya Ganguly ◽  
Anupama Dahanukar

The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow such information to be conveyed to distal tissues in a coordinated fashion. Here, we show Ecdysis-Triggering Hormone (ETH) is a regulator of male courtship in Drosophila melanogaster, and critical for mate choice and courtship inhibition after the completion of copulation. Preventing ETH release increases male-male courtship and decreases post-copulation courtship inhibition (PCCI). Such aberrant male courtship behavior in ETH-deficient males appears to be the consequence of inabilityto integrate pheromone cues into decision making. Silencing of ETH receptor (ETHR) in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D is critical for suppression of courtship after mating, and ETHR silencing in OR67D-expressing neurons, and GR32A-expressing neurons to a lesser degree, elevates post-copulation courtship. Finally, ETHR silencing in the corpus allatum increases post-copulation courtship; treatment of with juvenile hormone analog partially restores normal post-mating behavior. ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating.


2021 ◽  
Vol 22 (21) ◽  
pp. 11808
Author(s):  
Margaux Wieckowski ◽  
Stéphanie Ranga ◽  
Delphine Moison ◽  
Sébastien Messiaen ◽  
Sonia Abdallah ◽  
...  

For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.


Sign in / Sign up

Export Citation Format

Share Document