The downward continuation of aeromagnetic data from magnetic source ensembles

2019 ◽  
Vol 17 (2) ◽  
pp. 101-107 ◽  
Author(s):  
G.R.J. Cooper
2020 ◽  
Vol 4 (2) ◽  
pp. 76-85
Author(s):  
Nuraddeen Usman ◽  
Ibrahim Jibril

This work is aimed to determine the depth to basement of some magnetic sources in the study area. Four aeromagnetic sheets were acquired from the Nigerian Geological Survey Agency which includes (Bajoga, 131, Gulani, 132, Gombe, 152 and Wuyo, 153). The study area covers an estimated area of about 12100km2 between latitude 90N-110N and longitude 110E-130E. The total magnetic field of the study area have been evaluated. In order to determine the basement depth, spectral analysis technique was applied. Detailed analysis of the aeromagnetic data for the study area was performed. The procedure involved in the analysis include reduction to equator to remove the effect of inclination, contouring of the total magnetic intensity, separation of the regional and residual anomalies using polynomial fitting of first order, qualitative interpretation and quantitative interpretation. The residual field of the study area composes of low magnetic anomalies reaching a minimum value of -158.6nT as observed in the northern and southern parts and high magnetic anomalies reaching a maximum value of 178.1nT as observed in the western part of the study area. The result from the spectral analysis for each block shows that the depths to the magnetic source are 5.20Km for block 1, 5.74Km for block 2, 7.59Km for block 3 and 3.56Km for block 4. The average depth to magnetic source in the study area was found to be 5.52Km. Based on the computed average sedimentary thickness obtained in this study area, hydrocarbon accumulation in the study area is feasible.


1999 ◽  
Author(s):  
R.E. Sweeney ◽  
C.A. Finn ◽  
D.D. Blankenship ◽  
R.E. Bell ◽  
John C. Behrendt

2007 ◽  
Vol 107 (3) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey I. Berman ◽  
Mitchel S. Berger ◽  
Sungwon Chung ◽  
Srikantan S. Nagarajan ◽  
Roland G. Henry

Object Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning. Methods Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode. Results A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation. Conclusions Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.


Sign in / Sign up

Export Citation Format

Share Document