Numerical scheme for solving system of fractional partial differential equations with Volterra‐type integral term through two‐dimensional block‐pulse functions

2019 ◽  
Vol 35 (5) ◽  
pp. 1890-1903 ◽  
Author(s):  
Jiaquan Xie ◽  
Zhongkai Ren ◽  
Yugui Li ◽  
Xiaogang Wang ◽  
Tao Wang

2020 ◽  
Vol 5 (12) ◽  
pp. 406-420
Author(s):  
A. Aghili ◽  
M.R. Masomi

In this article, the authors used two dimensional Laplace transform to solve non - homogeneous sub - ballistic fractional PDE and homogeneous systems of time fractional heat equations. Constructive examples are also provided.



Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 2014
Author(s):  
Junjiang Lai ◽  
Hongyu Liu

In this paper, we consider numerical solutions for Riesz space fractional partial differential equations with a second order time derivative. We propose a Galerkin finite element scheme for both the temporal and spatial discretizations. For the proposed numerical scheme, we derive sharp stability estimates as well as optimal a priori error estimates. Extensive numerical experiments are conducted to verify the promising features of the newly proposed method.



2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Yongwen Wu ◽  
Lilun Zhang

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.



2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Dumitru Baleanu ◽  
Hassan Kamil Jassim

In this study, we examine adapting and using the Sumudu decomposition method (SDM) as a way to find approximate solutions to two-dimensional fractional partial differential equations and propose a numerical algorithm for solving fractional Riccati equation. This method is a combination of the Sumudu transform method and decomposition method. The fractional derivative is described in the Caputo sense. The results obtained show that the approach is easy to implement and accurate when applied to various fractional differential equations.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Di Xu ◽  
Fanwei Meng

Abstract In this article, we regard the generalized Riccati transformation and Riemann–Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.



Sign in / Sign up

Export Citation Format

Share Document