A superlinear convergence scheme for the multi‐term and distribution‐order fractional wave equation with initial singularity

Author(s):  
Jianfei Huang ◽  
Jingna Zhang ◽  
Sadia Arshad ◽  
Yifa Tang
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 874
Author(s):  
Francesco Iafrate ◽  
Enzo Orsingher

In this paper we study the time-fractional wave equation of order 1 < ν < 2 and give a probabilistic interpretation of its solution. In the case 0 < ν < 1 , d = 1 , the solution can be interpreted as a time-changed Brownian motion, while for 1 < ν < 2 it coincides with the density of a symmetric stable process of order 2 / ν . We give here an interpretation of the fractional wave equation for d > 1 in terms of laws of stable d−dimensional processes. We give a hint at the case of a fractional wave equation for ν > 2 and also at space-time fractional wave equations.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1283
Author(s):  
Karel Van Bockstal

We study an initial-boundary value problem for a fractional wave equation of time distributed-order with a nonlinear source term. The coefficients of the second order differential operator are dependent on the spatial and time variables. We show the existence of a unique weak solution to the problem under low regularity assumptions on the data, which includes weakly singular solutions in the class of admissible problems. A similar result holds true for the fractional wave equation with Caputo fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document