Identification of a source in a fractional wave equation from a boundary measurement

2019 ◽  
Vol 349 ◽  
pp. 172-186 ◽  
Author(s):  
K. Šišková ◽  
M. Slodička
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 874
Author(s):  
Francesco Iafrate ◽  
Enzo Orsingher

In this paper we study the time-fractional wave equation of order 1 < ν < 2 and give a probabilistic interpretation of its solution. In the case 0 < ν < 1 , d = 1 , the solution can be interpreted as a time-changed Brownian motion, while for 1 < ν < 2 it coincides with the density of a symmetric stable process of order 2 / ν . We give here an interpretation of the fractional wave equation for d > 1 in terms of laws of stable d−dimensional processes. We give a hint at the case of a fractional wave equation for ν > 2 and also at space-time fractional wave equations.


Author(s):  
Jinsong Liang ◽  
Weiwei Zhang ◽  
YangQuan Chen ◽  
Igor Podlubny

In this paper, we analyze the robustness of the fractional wave equation with a fractional order boundary controller subject to delayed boundary measurement. Conditions are given to guarantee stability when the delay is small. For large delays, the Smith predictor is applied to solve the instability problem and the scheme is proved to be robust against a small difference between the assumed delay and the actual delay. The analysis shows that fractional order controllers are better than integer order controllers in the robustness against delays in the boundary measurement.


Sign in / Sign up

Export Citation Format

Share Document