On linear-quadratic adaptive control for the design of missile autopilots

1993 ◽  
Vol 14 (4) ◽  
pp. 243-258 ◽  
Author(s):  
P. Bendotti ◽  
M. M'Saad
2020 ◽  
Vol 60 (3) ◽  
pp. 197-205
Author(s):  
Nasir Ahmad Al-Awad

In this paper, the heading control of a large ship is enhanced with a specific end goal, to check the unwanted impact of the waves on the actuator framework. The Nomoto model is investigated to describe the ship’s guiding progression. First and second order models are considered here. The viability of the models is examined based on the principal properties of the Nomoto model. Different controllers are proposed, these are Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR) and Model Reference Adaptive Control Genetic optimization Algorithm (MRAC-GA) for a ship heading control. The results show that the MRAC-GA controller provides the best results to satisfy the design requirements. The Matlab/Simulink tool is utilized to demonstrate the proposed arrangement in the control loop.


Author(s):  
Iman Sadeghzadeh ◽  
Ankit Mehta ◽  
Youmin Zhang

This paper proposes a useful approach to Fault Tolerant Control (FTC) based on the Model Reference Adaptive Control (MRAC) technique with application to a quadrotor helicopter Unmanned Aerial Vehicle (UAV) in hovering as well as trajectory tracking flight in order to control and keep the desired height and trajectory of the quadrotor helicopter in both normal conditions and in the presence of faults in one or more actuators. A Linear Quadratic Regulator (LQR) controller is used in cooperation with the MRAC to control the pitch and roll attitude of the helicopter. Three cases of fault are considered: 1) simulated fault in all the four actuators; 2) simulated fault in back and right motors; 3) a physical damage of 23% of one of the four propellers during autonomous flight. It can be seen from the test results that under the faulty and damage conditions MRAC controller provided a good response of the quadrotor UAV and result in safe landings of the quadrotor.


1985 ◽  
Vol 107 (4) ◽  
pp. 278-283 ◽  
Author(s):  
Qiusheng Zhang ◽  
Masayoshi Tomizuka

Multivariable direct adaptive control is tested on a nonlinear thermal mixing process and is compared with state space based nonadaptive controllers. The linear quadratic optimal control approach is used to design two nonadaptive controllers: one without integral action (ordinary LQ) and the other with integral action (LQI). The operating point is changed over a wide region in the experiment. The adaptive controller is verified to perform most consistently under the tested conditions.


2018 ◽  
Vol 51 (9-10) ◽  
pp. 498-513 ◽  
Author(s):  
Rusong Zhu ◽  
Guofu Yin ◽  
Zhenhua Chen ◽  
Shuangxi Zhang ◽  
Zili Guo

Background: Temperature is one of the main variables need to be regulated in cryogenic wind tunnel to realize the true flight Reynolds number. A new control methodology based on L1 output feedback adaptive control is deployed in the temperature control. Methods: This design is composed of three parts: linear quadratic Gaussian baseline control, L1 adaptive control and nonlinear feedforward control. A linear quadratic Gaussian controller is implemented as the baseline controller to provide the basic robustness of temperature control. A L1 output feedback adaptive controller with a modified piecewise constant adaptive law is deployed as an augmentation for the baseline controller to cancel the uncertainties within the actuator’s bandwidth. The modified adaptive law can guarantee better steady-state tracking performance compared with the standard adaptive law. A global nonlinear optimization process is carried out to obtain a suboptimal filter design for the L1 controller to maximize the performance index. The nonlinear feedforward control is to cancel the coupling effects in control of the tunnel. Results: With these design techniques, the augmented L1 adaptive controller improves the performance of the baseline controller in the presence of uncertainties of dynamics. The simulation results and analysis demonstrate the effectiveness of the proposed control architecture. Conclusion: The modification of adaptive law plus the global nonlinear optimization of the filter in the L1 adaptive control architecture helps the controller achieve good control performance and acceptable robustness for the temperature control over a wide range of operations.


Sign in / Sign up

Export Citation Format

Share Document