heading control
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 88)

H-INDEX

12
(FIVE YEARS 5)

2022 ◽  
Vol 355 ◽  
pp. 03064
Author(s):  
Jiaming Yu ◽  
Renxiang Bu ◽  
Liangqi Li

In view of the inherent non-linearity, complexity, susceptibility to external wind, wave, and current interference of under-driven ships, and the difficulty of adjusting and adjusting control parameters, to improve the performance of ship’s autopilot, a kind of RBF neural network sliding mode variable structure PID controller is designed. Traditional PID control is sensitive to parameter changes, online tuning is difficult, and easy to overshoot. In order to solve this problem, combining the variable structure characteristics of PID, a differential compensation term is added to the integral term to convert the PID control parameters into three parameters with more obvious physical meanings, and then combined with the RBF neural network learning and identification function to realize online tuning and adaptive control of ship control parameters. Using MATLAB software to simulate the container ship “MV KOTA SEGAR” MMG model shows that the designed RBF neural network sliding mode PID controller can effectively eliminate the ship’s lateral deviation caused by external interference such as wind, waves, currents, etc., with high control accuracy,robustness and strong adaptability.


2022 ◽  
Vol 118 ◽  
pp. 102960
Author(s):  
Dianrui Wang ◽  
Yue Shen ◽  
Junhe Wan ◽  
Qixin Sha ◽  
Guangliang Li ◽  
...  

Author(s):  
Haitong Xu ◽  
C Guedes Soares

An optimized path following guidance law is proposed for path-following of an underactuated surface ship. The main purpose of the proposed guidance law is to make a marine vessel travel with more energy efficiency. A combined feedback and feedforward controller is used for the heading control. The feedforward term is designed based on the well-known Nomoto model, whose parameters are estimated using least-square support vector regression. In order to achieve optimal operation of a marine vessel, a global optimization algorithm is employed to search the regularization factors, which are the trade-off between the total cross-track errors and total control energy. The simulation studies are carried out to demonstrate the performance of the proposed guidance law. The proposed method is an effective and practical guidance law and provide an optimal option for marine navigator.


Author(s):  
Alexander Aleksandrovich Dyda ◽  
Van Thanh Nguyen ◽  
Dmitry Aleksandrovich Oskin

The article focuses on developing synthesis methods for automatic heading control systems for the rudder-controlled sea vessel. The solution of the problem of vessel heading control is carried out in the conditions of heavy sea. The disturbing effect of the external water environment causes the vessel yawning, which results in exceeding activity of the steering gear. This leads to its increased wear and loss in the longitudinal speed of the vessel. To reduce the wave effect there has been supposed an approach based on the additionally introduced internal model of the ship dynamics. The given approach is aimed at improving the operation of the steering gear in rough seas. To implement the proposed algorithm, changes are made to the original system by introducing an internal model in parallel to the control object and modifying the feedback channel of the control system. To describe the sea vessel dynamics there is used the 1st order Nomoto model, the steering gear model is implemented in accordance with the imposed speed limits and the rudder shift value. Wave disturbance is close to harmonic disturbance. The identification of the parameters of the internal model can be carried out in advance, both by maneuvering tests and by the process of operation. Numerical simulations carried out in the MATLAB/Simulink system confirmed the advantage of the proposed approach. The synthesis of control in a system with an internal model makes it possible to significantly neutralize the influence of wave disturbance. The modifications introduced to the original control system help to improve functioning of the steering gear, significantly reducing the number of rudder shifts during operation.


2021 ◽  
Vol 5 ◽  
pp. 157-181
Author(s):  
. Iswanto ◽  
Alfian Ma’arif ◽  
Nia Maharani Raharja ◽  
Gatot Supangkat ◽  
Fitri Arofiati ◽  
...  

Inhalation therapy is one of the most popular treatments for many pulmonary conditions. The proposed Covid-19 aromatherapy robot is a type of Unmanned Ground Vehicle (UGV) mobile robot that delivers therapeutic vaporized essential oils or drugs needed to prevent or treat Covid-19 infections. It uses four omnidirectional wheels with a controlled speed to possibly move in all directions according to its trajectory. All motors for straight, left, or right directions need to be controlled, or the robot will be off-target. The paper presents omnidirectional four-wheeled robot trajectory tracking control based on PID and odometry. The odometry was used to obtain the robot's position and orientation, creating the global map. PID-based controls are used for three purposes: motor speed control, heading control, and position control. The omnidirectional robot had successfully controlled the movement of its four wheels at low speed on the trajectory tracking with a performance criterion value of 0.1 for the IAEH, 4.0 for MAEH, 0.01 for RMSEH, 0.00 for RMSEXY, and 0.06 for REBS. According to the experiment results, the robot's linear velocity error rate is 2%, with an average test value of 1.3 percent. The robot heading effective error value on all trajectories is 0.6%. The robot's direction can be monitored and be maintained at the planned trajectory. Doi: 10.28991/esj-2021-SPER-13 Full Text: PDF


2021 ◽  
Author(s):  
Mingzhen Lin ◽  
Zhiqiang Zhang ◽  
Yandong Pang ◽  
Hongsheng Lin ◽  
Qing Ji

Abstract The path following control under disturbance was studied for an underactuated unmanned surface vehicle (USV) subject to the rudder angle and velocity constraints. For this reason, a variable look-ahead integral line-of-sight (LOS) guidance law was designed on the basis of the disturbance estimation and compensation, and a cascade path following control system was created following the heading control law based on the model prediction. Firstly, the guidance law was designed using the USV three-degree-of-freedom (DOF) motion model and the LOS method, while the tracking error state was introduced to design the real-time estimation of disturbance observer and compensate for the influence of ocean current. Moreover, the stability of the system was analyzed. Secondly, sufficient attention was paid to the rudder angle and velocity constraints and the influence of system delay and other factors in the process of path following when the heading control law was designed with the USV motion response model and the model predictive control (MPC). The moving horizon optimization strategy was adopted to achieve better dynamic performance, effectively overcome the influence of model and environmental uncertainties, and further prove the stability of the control law. Thirdly, a simulation experiment was carried out to verify the effectiveness and advancement of the proposed algorithm. Fourthly, the “Sturgeon 03” USV was used in the lake test of the proposed control algorithm to prove its feasibility in the engineering practices.


Author(s):  
Andrew Kruger ◽  
Robert Maksimowicz ◽  
Mehrunisa Zaheer ◽  
Alfredo Almaraz-Vega ◽  
Jesus Urquiza

Experiments flown on high-altitude balloons are typically free to spin without any control or information collected on the payload orientation during flight, limiting the scope of experiments that can be performed. Projects that include targeting (i.e. imaging the 2017 solar eclipse) have at best a random chance of succeeding, while video footage is often hard to watch due to high payload rotation rates. While passive stabilization reduces the rotation rate, active pointing control is necessary for continuous target acquisition. Here we discuss a project built by students at Wright College called the Controlled Heading Automation Device (CHAD) that actively controls the heading of other instruments (i.e. cameras) and has been proven to work in flight. This project is open-source, 3D printable, made from cheap DIY electronics, and has been made available online (http://physi.cz/chad) so the high-altitude ballooning community can create, use, and adapt it to their own projects. We show how to create an attitude and heading reference system (AHRS) that can be used to continuously record payload orientation, which can supplement experiments where pointing information is needed. We then show how to have CHAD use the AHRS to automatically control the heading of other instruments in real-time without any other inputs.


2021 ◽  
Vol 9 (8) ◽  
pp. 828
Author(s):  
Liyan Zhu ◽  
Tieshan Li

Traffic engineering control is a major challenge in marine transportation. Cost efficiency and high performance demand advanced technologies for the ship control systems. This paper develops an autopilot heading control scheme based on a fuzzy state observer for an intelligent ship on this subject to track the prescribed function while calling for performance limitation and order execution time. A fuzzy logic system (FLS) is adopted to approximate the unknown uncertainties caused by the changes in water depth, wind, wave, ship loading, and speed in navigation. State observer is required to obtain unknown yaw rate. By adopting performance function and tracking error transformation techniques, the heading tracking error can converge to prescribed performance bounds. Taking settling time into account, the finite-time adaptive prescribed performance control algorithm can save more resources effectively. Based on the Lyapunov stability theory, the observer-based adaptive fuzzy control approach does not cause any unbounded signal, the system remains stable. Meanwhile, the autopilot heading control system with an unknown yaw rate and constraint state can benefit from the given design.


Sign in / Sign up

Export Citation Format

Share Document