scholarly journals Flatness based trajectory planning for a semi-linear hyperbolic system of first order p.d.e. modeling a tubular reactor

PAMM ◽  
2009 ◽  
Vol 9 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Frank Woittennek ◽  
Joachim Rudolph ◽  
Torsten Knüppel
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Yasunori Maekawa ◽  
Yoshihiro Ueda

In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic system with general relaxation and provide the algebraic characterization for the uniform dissipativity up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric relaxation, with a full generality and optimality.


2019 ◽  
Vol 25 (1) ◽  
pp. 13-23
Author(s):  
Abdelkader Intissar ◽  
Aref Jeribi ◽  
Ines Walha

Abstract This paper studies a linear hyperbolic system with boundary conditions that was first studied under some weaker conditions in [8, 11]. Problems on the expansion of a semigroup and a criterion for being a Riesz basis are discussed in the present paper. It is shown that the associated linear system is the infinitesimal generator of a {C_{0}} -semigroup; its spectrum consists of zeros of a sine-type function, and its exponential system {\{e^{\lambda_{n}t}\}_{n\geq 1}} constitutes a Riesz basis in {L^{2}[0,T]} . Furthermore, by the spectral analysis method, it is also shown that the linear system has a sequence of eigenvectors, which form a Riesz basis in Hilbert space, and hence the spectrum-determined growth condition is deduced.


Sign in / Sign up

Export Citation Format

Share Document