tubular reactor
Recently Published Documents


TOTAL DOCUMENTS

947
(FIVE YEARS 144)

H-INDEX

41
(FIVE YEARS 6)

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Marek Berezowski ◽  
Natalia Kozioł ◽  
Marcin Lawnik

Oscillations, including chaotic ones, can spontaneously appear in chemical reactors or lean premixed combustors. Such behavior of the system is undesirable and should be identified at the stage of its modeling. This article analyzes the behavior of reverse-flow tubular chemical reactor with longitudinal dispersion in terms of chaotic oscillations. The purpose of using reverse flow is to increase the conversion degree. For the analysis of the reactor, among others, spectral analysis, entropy, and bifurcation analysis were used. The obtained results show the chaotic behavior of the reactor in a wide range of changes in the parameter’s values.


Author(s):  
Sadra Souzanchi ◽  
Laleh Nazari ◽  
Venkat Kasanneni ◽  
Zhongchao Tan ◽  
Charles Xu

Isomerization of glucose to fructose was studied over activated hydrotalcite as a catalyst in a continuous-flow tubular reactor. The synthetic hydrotalcite (HT), calcined hydrotalcite (HT-C) and activated hydrotalcite (calcined-rehydrated hydrotalcite (HT-C-R)) were characterized by TGA, XRD, BET surface area, and FT-IR analyses. The effects of operating conditions, including reaction temperature and retention time (in terms of both catalyst loading and feeding flow rate) on the isomerization reaction, were investigated. Glucose conversion and fructose selectivity were found to be more strongly dependent on retention time than reaction temperature. The fructose yield was mostly dependent on the feeding flow rate, and its maximum value of 18% corresponded to the lowest flow rate of 0.5 ml/min. The regenerated hydrotalcite catalyst showed that the catalyst activity could be restored through the calcination-rehydration process, and it showed good potential for recycling and reusability.


Author(s):  
Ali Najarnezhadmashhadi ◽  
Catarina Braz ◽  
Vincenzo Russo ◽  
Kari Eränen ◽  
Henrique Matos ◽  
...  

An advanced comprehensive and transient multiphase model for a trickle bed reactor with solid foam packings was developed. A new simulation model for isothermal three-phase (gas–liquid–solid) catalytic tubular reactor models was presented where axial, radial and catalyst layer effects were included. The gas, liquid and solid phase mass balances included most of the individual terms for solid foam packing (e.g. kinetics, liquid-solid and intraparticle mass transfer effects). Hydrogenation of arabinose and galactose mixture on a ruthenium catalyst supported by carbon-coated aluminum foams was applied as a fundamentally and industrially relevant case study. Parameter estimations allowed to obtain reliable and significant parameters. To test the model performance, a sensitivity analysis was performed and the effect of the kinetic parameters and the operation conditions on the arabinose and galactose conversions was studied in detail. The model described here is applicable for other three-phase continuous catalytic reactors with solid foam packings.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2270
Author(s):  
Julien Gornay ◽  
Edouard Plasari ◽  
Jean-François Portha ◽  
Pierre-Alexandre Glaude ◽  
Francis Billaud ◽  
...  

The material described in this article deals with waste conversion into energy vectors by pyrolysis, steam cracking, or oxidation of liquid biomass, carried out at small to medium scale. The design of a bench-scale experimental setup devoted to gas phase kinetic data generation in a tubular reactor under laminar regime close to plug flow is detailed based on a very simple approach. Validation of the designed bench-scale setup was successfully carried out within the context of octanoic acid pyrolysis by generating kinetic data with satisfactory measurement repeatability and material balances. The key to this positive result is that axial dispersion coefficient is much smaller in gas-phase than in liquid-phase, thus allowing the designed small sized tubular reactor to be close to the plug flow reactor. Such a feature of the axial dispersion coefficient is not well known by the wider public. Besides, octanoic acid was selected as surrogate for carboxylic acids because of their key role in various industrial applications (combustion of ethyl biodiesel; production of biofuel and biosourced chemicals).


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1412
Author(s):  
Jakub Bumba ◽  
Vladislav Drinek ◽  
Pavel Krystynik ◽  
Pavel Dytrych ◽  
Olga Solcova

A technology designed for recycling photovoltaic (PV) cells at the end of their life was successfully used for the preparation of a nickel silicide catalyst. PV cells were mixed with magnesium scrap to produce magnesium silicide (Mg2Si), with almost total conversion under optimized conditions (400 °C, 5 Pa, 25 min), in a constructed semi-open tubular reactor. Subsequently, magnesium silicide was hydrolyzed by 25% phosphoric acid to produce a mixture of silicon hydrides, which were utilized as chemical vapor deposition (CVD) precursors for the preparation of a nickel silicide catalyst. The activity and stability of the prepared catalyst was repeatedly tested for methanation reactions. It was verified that the nickel silicide catalyst showed an approximately 20% higher activity for the methanation reactions compared to the commonly used nickel catalyst.


Author(s):  
Stefan Höving ◽  
Jens Bobers ◽  
Norbert Kockmann

Abstract Limited applicability and scarce availability of analytical equipment for micro- and millifluidic applications, which are of high interest in research and development, complicate process development, control, and monitoring. The low-cost sensor presented in this work is a modular, fast, non-invasive, multi-purpose, and easy to apply solution for detecting phase changes and concentrations of optically absorbing substances in single and multi-phase capillary flow. It aims at generating deeper insight into existing processes in fields of (bio-)chemical and reaction engineering. The scope of this work includes the application of the sensor to residence time measurements in a heat exchanger, a tubular reactor for concentration measurements, a tubular crystallizer for suspension detection, and a pipetting robot for flow automation purposes. In all presented applications either the level of automation has been increased or more information on the investigated system has been gained. Further applications are explained to be realized in the near future. Article highlights • An affordable multipurpose sensor for phase differentiation, concentration measurements, and process automation has been developed and characterized • The sensor is easily modified and can be applied to various tubular reaction/process units for analytical and automation purposes • Simple integration into existing process control systems is possible Graphical abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Sunggeun Lee ◽  
Hankwon Lim

To overcome the weak point of the gas type heating (failure in heating uniformly and persistently), liquid type molten salt as a concentration of solar energy was considered as a heat source for dry reforming. This high-temperature molten salt flowing through the center of the tubular reactor supplies necessary heat. The dependence on the number of heat source of the hydrogen production was investigated under the assumption of the fixed volume of the catalyst bed. By changing these numbers, we numerically investigated the methane conversion and hydrogen flow rate to find the best performance. The results showed that the methane conversion performance and hydrogen flow rate improved in proportion to the number of heating tubes. For the one heat source, the reactor surrounded by a heat source rather than that located in the center is the best in terms of hydrogen yield. In addition, this study considered the case in which the system is divided into several smaller reactors of equal sizes and a constant amount of catalyst. In these reactors, we saw that the methane conversion and hydrogen flow rate were reduced. The results indicate that the installation of as many heating tubes as possible is preferable.


Author(s):  
Hui Guo ◽  
Yuchao Li ◽  
Cuncun Zuo ◽  
Yanxia Zheng ◽  
Xinpeng Guo ◽  
...  

Homogeneous hydrogen transfer reactions of methacrolein (MAL) and isopropanol (IPA) to methallyl alcohol (MAA) were investigated in batch reactor (Conv.89%, Select 93.1%) and tubular reactor (Conv.88.1%, Select 95%) using aluminum isopropoxide (Al(OPri)3) as catalyst. Kinetic experiments on hydrogen transfer reactions and reaction order were investigated in batch reactor and tubular reactor. Response surface methodology (RAM) was applied to optimize the optimum reaction conditions of hydrogen transfer reaction. Purification process of MAA from product mixture after hydrogen transfer reaction was simulated with Aspen Plus software, theoretical stages, reflux ratio and feed stage of distillation tower were optimized. Density Functional Theory (DFT) was used to investigate viable reaction pathway and to probe the catalytic mechanism between reactants and catalyst, including dehydrogenation, coupling and hydrogenation reaction. Microscopic mechanisms of hydrogen transfer reaction from MAA to MAL were acquired in detail and could be easily extended to other series of hydrogen transfer reaction.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1967
Author(s):  
Heribert Helgers ◽  
Alina Hengelbrock ◽  
Axel Schmidt ◽  
Jochen Strube

The global coronavirus pandemic continues to restrict public life worldwide. An effective means of limiting the pandemic is vaccination. Messenger ribonucleic acid (mRNA) vaccines currently available on the market have proven to be a well-tolerated and effective class of vaccine against coronavirus type 2 (CoV2). Accordingly, demand is presently outstripping mRNA vaccine production. One way to increase productivity is to switch from the currently performed batch to continuous in vitro transcription, which has proven to be a crucial material-consuming step. In this article, a physico-chemical model of in vitro mRNA transcription in a tubular reactor is presented and compared to classical batch and continuous in vitro transcription in a stirred tank. The three models are validated based on a distinct and quantitative validation workflow. Statistically significant parameters are identified as part of the parameter determination concept. Monte Carlo simulations showed that the model is precise, with a deviation of less than 1%. The advantages of continuous production are pointed out compared to batchwise in vitro transcription by optimization of the space–time yield. Improvements of a factor of 56 (0.011 µM/min) in the case of the continuously stirred tank reactor (CSTR) and 68 (0.013 µM/min) in the case of the plug flow reactor (PFR) were found.


Sign in / Sign up

Export Citation Format

Share Document