scholarly journals Hydroxyurea Therapy for Children With Sickle Cell Anemia in Sub‐Saharan Africa: Rationale and Design of the REACH Trial

2015 ◽  
Vol 63 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Patrick T. McGann ◽  
Léon Tshilolo ◽  
Brigida Santos ◽  
George A. Tomlinson ◽  
Susan Stuber ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 993-993
Author(s):  
Leon Tshilolo ◽  
George A. Tomlinson ◽  
Patrick T. McGann ◽  
Teresa S. Latham ◽  
Peter Olupot-Olupot ◽  
...  

Introduction. Children with sickle cell anemia enrolled in Realizing Effectiveness Across Continents with Hydroxyurea (REACH, NCT01966731) received open-label hydroxyurea at maximum tolerated dose (MTD) in four countries within sub-Saharan Africa (Tshilolo et al, NEJM 2019;380:121-131). Unlike children in the United States or Europe, a substantial proportion of REACH participants had splenomegaly at enrollment, and more developed splenomegaly while receiving hydroxyurea. Splenic enlargement in association with hydroxyurea treatment in sub-Saharan Africa is previously unrecognized, and its causes and consequences remain unclear. Methods. Palpable splenomegaly was evaluated at both the mid-clavicular and mid-axillary lines at each scheduled and unscheduled sick visit. The size of the spleen, defined as the greatest distance (cm) below the subcostal margin, was recorded in the REDCap trial database at all four clinical sites. Cross-sectional analysis was performed at baseline enrollment using four spleen categories (Not Palpable, 1-4 cm, ≥5 cm, or Splenectomy) with correlations for age, sex, site, growth parameters, alpha-thalassemia trait and G6PD deficiency. This analysis was repeated using the largest spleen size over the first two years on hydroxyurea, but examining two-year laboratory values and also the hydroxyurea dose at MTD, time to MTD, dose-limiting toxicities, and clinical outcomes including acute splenic sequestration, malaria infections, and sepsis. Results. A total of 606 children started hydroxyurea study treatment, including 6 (1.0%) with previous splenectomy, 59 (9.7%) with previous splenic sequestration, and 99 (16.3%) with palpable splenomegaly at enrollment (52 children with 1-4 cm and 47 with ≥5 cm). Large spleens (≥5 cm) were commonly observed at baseline at all clinical sites except Uganda, which identified only 1 child. Compared to those with no palpable spleen, children with large spleens at baseline had similar age and growth parameters, but were significantly more likely to have alpha-thalassemia (78.7% versus 56.2%, P=0.004) and also G6PD deficiency among males (28.0% versus 17.6%, P=0.32). Children with large spleens at enrollment also had a lower hemoglobin (Hb = 6.5 versus 7.3 g/dL, P<0.001) and lower platelet count (platelets = 227 versus 410 x 109/L, P<0.001), but equivalent fetal hemoglobin (HbF = 10.2 versus 9.4%, P=0.82). On hydroxyurea treatment with escalation to MTD, 262 children (43.7%) had palpable splenomegaly recorded, including 120 (20.0%) with spleens ≥5 cm. These large spleens were observed at all four clinical sites, with DRC having the most (52) and Uganda with the least (14). After 24 months of hydroxyurea treatment, laboratory differences were noted according to the cumulative occurrence of splenomegaly including a significantly lower hemoglobin and platelet count, higher absolute reticulocyte count, and lower hydroxyurea dose at MTD (Table). Large spleens were associated with a high cumulative incidence of laboratory dose-limiting toxicities, as well as a significantly higher risk of having clinically symptomatic malaria and receiving blood transfusions (Table). A total of 31 children (5.2%) on hydroxyurea treatment received elective splenectomy, including one partial splenectomy using arterial embolization. Conclusion. Children with sickle cell anemia living in sub-Saharan Africa have an increased risk of having palpable splenomegaly, which is further increased while receiving hydroxyurea treatment. Large spleen at baseline were associated with lower blood counts, consistent with hypersplenism. On hydroxyurea treatment, children with large spleens had significantly lower blood counts and more dose-limiting toxicities, which lowered their eventual hydroxyurea dose at MTD but still led to robust HbF responses. Children with large spleens were also at higher risk of developing malaria infections, receiving transfusions, and requiring surgical splenectomy. Splenic enlargement in association with hydroxyurea treatment was common in children with sickle cell anemia in the REACH trial; its cause remains unclear but the consequences include substantial laboratory toxicity and clinical morbidity. Investigating the etiologies and management of children with chronically enlarged spleens is crucial before expanding hydroxyurea access across Africa for sickle cell anemia. Disclosures Ware: Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Other: Research Drug Donation; Nova Laboratories: Membership on an entity's Board of Directors or advisory committees; CSL Behring: Membership on an entity's Board of Directors or advisory committees; Novartis: Other: DSMB; Agios: Membership on an entity's Board of Directors or advisory committees; Addmedica: Other: Research Drug Donation.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Russell E. Ware

Abstract Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 834-838 ◽  
Author(s):  
Mohamed Cherif Rahimy ◽  
Annick Gangbo ◽  
Gilbert Ahouignan ◽  
Roselyn Adjou ◽  
Chantal Deguenon ◽  
...  

Abstract Clinical severity of sickle cell anemia (SS) in Africa may not be solely determined by genetic factors. This study evaluated the effects of intensive parental education and adequate clinical care on the course of SS in children in Benin. SS children referred to the National Teaching Hospital in Cotonou were included in the study. Teaching about SS was repeated frequently, emphasizing the importance of keeping clinic appointments, improving the nutrition of the affected children, and instituting antipneumococcal and antimalarial prophylaxis. Frequency and severity of SS-related events, changes in physical growth, frequency of malarial attacks, causes of transfusion, and causes of death were the principal variables assessed. 236 young children with repeated SS-related acute complications were studied from July 1, 1993, to December 31, 1999 (983 patient-years). A marked reduction in the frequency and severity of SS-related acute events was observed. Improvement in general status and physical growth was noted in 184 patients (78%); in addition, 22 of the remaining 52 patients showed similar improvement after remotivating the parents for compliance. There were 10 deaths, primarily in this cohort of 52 patients. Intensive sociomedical intervention can produce sustained clinical improvement in many severely ill SS children in sub-Saharan Africa.


Author(s):  
Dr. Rajesh Shukla ◽  
Dr. Mehul Gajera

Background: The most predominant form of haemoglobinopathy worldwide is sickle cell disease. The greatest burden of the disease lies in sub-Saharan Africa and Asia5. Objective: To evaluate the effectiveness of HU therapy in sickle cell disease as measured by decrease in crises rate, hospital admissions, days of hospitalization and number of blood transfusions. Methods: the study was conducted on 79 children of 1-16 year age. Out of which in only 75 patients Hydroxyurea therapy was started as they were found to be eligible. 16% of the patients responded to 15 mg/kg/ day of HU, 50.66% responded to 20 mg/kg/ day, 29.33% to 25 mg/kg/ day and only 4% needed a dose escalation to 30 mg/kg/ day for the response. Results: Our study showed a significant reduction in the VOC rate from 243 episodes to 46 episodes (p value <0.001), the number of ACS reduced from 37 episodes to 5 episodes (p value <0.001), also there is a significant decline in the rates of hemolytic crises from 63 episodes to 10 episodes per year, Significant increase in the HbF levels from 15.87±5.50% to 21.77.±4.06% (p value <0.001). There was a definite and significant reduction in the number of hospitalization days from 7.76±4.76 to 3.79±2.29 days and in the number of admissions per year dropped significantly from 4.80 ± 1.41 to 1.42± 0.61 per year. Conclusion: Hydroxyurea reduced the frequency of painful crises and diminished the number of hospitalization, transfusion, and episodes of acute chest syndrome17. Keywords: Haemoglobin (Hb), Hydroxyurea (HU), Mean Corpuscular Volume (MCV), Pletelet Counts, Sickle Cell Disease (SCD), White Blood Cells (WBC).


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Russell E. Ware

Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Banu Aygun ◽  
George A. Tomlinson ◽  
Patrick T. McGann ◽  
Leon Tshilolo ◽  
Thomas N. Williams ◽  
...  

Introduction: Realizing Effectiveness Across Continents with Hydroxyurea (REACH, NCT01966731) is an open-label study of hydroxyurea for children with sickle cell anemia (SCA) in sub-Saharan Africa (Angola, DR Congo, Kenya, and Uganda). Initial results documented the feasibility, safety, and benefits of hydroxyurea for SCA in sub-Saharan Africa but guidance for optimizing hydroxyurea therapy is needed. We describe 5 years of hydroxyurea dosing and monitoring in the largest prospective cohort of children with SCA receiving hydroxyurea to date. Methods: Children 1-10 years of age with SCA were enrolled. The hydroxyurea dose was fixed at 15-20 mg/kg/day for the first 6 months with monthly complete blood counts (CBCs) to ensure safety. From month 6-24, the dose was escalated (5 mg/kg every 8 weeks) to maximum tolerated dose (MTD), defined as mild myelosuppression with absolute neutrophil count (ANC) &lt;4.0 x 109/L on 2 consecutive CBCs without hematological toxicities. CBCs were performed monthly until MTD or a stable dose was achieved, then subsequently every 3 months. Dose limiting toxicities (DLT) requiring a temporary treatment hold were defined as ANC &lt;1.0 x 109/L, Hb &lt;4.0 g/dL, reticulocyte count &lt;80 x 109/L unless Hb &gt;7.0 g/dL, or platelets &lt;80 x 109/L. Known genetic modifiers of SCA, including G6PD deficiency and α-thalassemia trait, were determined for all participants. Results: A total of 606 children initiated hydroxyurea and currently 555 (92%) remain on treatment, with average treatment duration of 48 ± 12 months and a total of 2,441 patient-years of hydroxyurea treatment. Over 85% achieved MTD with an average hydroxyurea dose of 22.5 ± 5.0 mg/kg/day, ranging from 19.0 mg/kg/day in Angola to 25.4 mg/kg/day in Uganda. With dose increases over time, the most recent average dose is 23.9 ± 5.4 mg/kg/day (site range 22.9-24.6 mg/kg/day). Lab benefits have been sustained; Hb increased from 7.3 g/dL at baseline to 8.4 g/dL at MTD and remains 8.3 g/dL at Month 60. Similarly, the average HbF increased from 11% baseline to 25% at MTD and remains 23% at Month 60. The average ANC decreased from 6.8 x 109/L at baseline to 3.2 x 109/L at MTD and remains 3.5 x 109/L at Month 60. Lab toxicities are infrequent, transient, and mostly incidental. Of 19,730 CBCs obtained during the treatment phase, 421 (2.1%) in 225 participants included a DLT. The most common DLT was thrombocytopenia (33%), with only 4 platelet counts &lt;20 x 109/L and no bleeding. Anemia was the second most common DLT (26%), most commonly associated with a high reticulocyte count and malarial infection, unrelated to hydroxyurea. Severe neutropenia (ANC &lt;0.5 x 109/L) was rare (5 events) with no neutropenic infections. Over 2/3 of DLT events were identified incidentally during a scheduled visit when the study participant was asymptomatic, including all 5 severe neutropenic episodes. Weight-for-age and height-for-age Z-scores were not associated with higher rates of DLT during hydroxyurea treatment. Children with two-gene deletional α-thalassemia trait tolerated significantly lower hydroxyurea doses than the normal genotype (MTD dose 20.0 vs. 24.0 mg/kg/day, p &lt;0.001) and had significantly different treatment responses at Month 60 including lower HbF (19.5 vs 24.3%, p &lt;0.0001) and MCV (72 vs 99 fL, p&lt;0.001) but higher hemoglobin (8.5 vs 8.1 g/dL, p=0.016). DLT frequency was unaffected by α-thalassemia status. Males with G6PD A- deficiency did not demonstrate significant differences in dosing, response, or toxicity. Conclusions: Hydroxyurea is safe, well-tolerated, and effective for children with SCA living in sub-Saharan Africa. Treatment responses are robust and sustained in REACH across all 4 clinical sites and unaffected by baseline Z-score. Hydroxyurea optimization requires periodic dose escalation for weight gain and titration to mild myelosuppression. Deletional α-thalassemia trait significantly influences the hydroxyurea dose and treatment responses, but the lab benefits with optimized dosing are still robust regardless of the α-globin genotype. Lab toxicities from hydroxyurea are uncommon and typically asymptomatic, suggesting that routine CBC monitoring is needed only at 3-month intervals once a stable dose is achieved, more to optimize the dose than to identify incidental toxicities. This approach to optimizing hydroxyurea therapy will allow more widespread utilization in low-resource settings with limited laboratory monitoring. Disclosures Aygun: National Heart, Lung, and Blood Institute: Research Funding; National Institute of Nursing Research: Research Funding; Patient-Centered Outsomes Research Institute: Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Emmanuela E. Ambrose ◽  
Luke R. Smart ◽  
Primrose Songoro ◽  
Idd Shabani ◽  
Protas Komba ◽  
...  

Introduction: Sickle cell anemia (SCA) is highly prevalent in sub-Saharan Africa with &gt;300,000 annual births, and substantial morbidity and mortality due to limited resources. The burden of stroke in this population is of particular concern, given the devastating clinical and neurocognitive sequelae of these events. Hydroxyurea, a potent disease modifying therapy for SCA, is safe and feasible for low-resource and malarial endemic countries within sub-Saharan Africa and when used at maximum tolerated dose (MTD), decreases the incidence of acute painful vaso-occlusive events, infections, malaria, transfusions, hospitalizations, and death. Whether hydroxyurea can prevent primary stroke in SCA within Africa has not yet been determined, due in part to lack of stroke screening programs using transcranial Doppler (TCD) ultrasonography. If effective, hydroxyurea would have even more therapeutic benefits for children with SCA, particularly in settings where blood is not available, affordable, or safe. We designed the Stroke Prevention with Hydroxyurea Enabled through Research and Education (SPHERE) trial to determine the stroke risk among Tanzanian children using TCD screening and to investigate the effects of hydroxyurea to reduce that risk. Methods: The SPHERE trial (NCT03948867) is a single center prospective phase 2 open-label screening and treatment pilot study at Bugando Medical Centre, a teaching and referral hospital in Mwanza, Tanzania. Children 2-16 years old with SCA consented to TCD screening by locally trained and certified examiners; recent febrile illness, red cell transfusion, or hospitalization were temporary exclusions. Study participants with maximum Time-Averaged Mean Velocity (TAMV) on TCD exam categorized as conditional (170-199 cm/sec) or abnormal (≥200 cm/sec) are offered hydroxyurea with escalation to MTD, while those with normal TCD screening exams will be rescreened annually. Hydroxyurea is initiated at ~20 mg/kg/day using 500 mg capsules and a weekly dosing calculator, then escalated every 8 weeks by 5 mg/kg/day up to 35 mg/kg/day. Children on hydroxyurea are seen monthly during dose escalation and every 3 months after reaching MTD. The primary endpoint is change in TCD velocity after 12 months of hydroxyurea therapy. Secondary endpoints include changes in splenic volume and filtrative function; change in renal function; incidence of infection, especially malaria; hydroxyurea pharmacokinetics; and genetic modifiers of disease including pharmacogenomics. Results: From April 2019 to April 2020, a total of 202 children underwent TCD screening, exceeding the projected enrollment pace and goal (Figure). The average age (mean ± SD) at enrollment was 6.8 ± 3.5 years, and 53% were female. A majority had previous dactylitis (75%), painful vaso-occlusive episode (93%), blood transfusion (68%), and malaria (89%). Recurrent hospitalization was common with 30% having &gt;5 previous hospitalizations. Only 4% had previously used hydroxyurea. Baseline labs included hemoglobin = 7.8 ± 1.3 g/dL, HbF = 9.3 ± 5.4 %, and ANC = 5.5 ± 2.4 x 109/L. Baseline assessment revealed a palpable spleen in 46 children (23%), and most of these (29) were ≥5 cm below the costal margin. Abdominal ultrasonography documented splenic tissue in 91% of children with an average volume of 101 ± 123 mL (range 8-1045). TCD examinations were performed in all children at enrollment with average TAMV of 148 ± 27 cm/sec [median 144, IQR 130-169 cm/sec] with 76% normal, 21% conditional, 2% abnormal, and 1% inadequate exams. Of 47 children eligible for hydroxyurea for elevated TCD velocities, 45 successfully initiated treatment, while 1 lived too far away for regular visits, and 1 had low blood counts from acute splenic sequestration and died before initiating study treatment. Conclusion: Children with SCA in Tanzania have a high risk for primary stroke. Identification of elevated TCD velocities through screening by local trained certified examiners, coupled with initiation of hydroxyurea treatment with dose escalation to MTD, offers a feasible and affordable means by which to lower TCD velocities and reduce primary stroke risk. Now fully enrolled, SPHERE has built local clinical capacity, research infrastructure and high-quality TCD screening, and will prospectively determine the benefits of hydroxyurea for stroke prevention, as a prelude for expanding hydroxyurea access for children with SCA in Tanzania. Figure Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document