Higher mechanical performances of CF /PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s‐PEEK

2019 ◽  
Vol 40 (9) ◽  
pp. 3749-3757 ◽  
Author(s):  
Xiping Gao ◽  
Zhigao Huang ◽  
Huamin Zhou ◽  
Dequn Li ◽  
Yang Li ◽  
...  
Polymer ◽  
2021 ◽  
Vol 227 ◽  
pp. 123865
Author(s):  
Bankole I. Oladapo ◽  
S. Abolfazl Zahedi ◽  
Sikiru O. Ismail

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2312 ◽  
Author(s):  
Huiran Zou ◽  
Weilong Yin ◽  
Chaocan Cai ◽  
Bing Wang ◽  
Ankang Liu ◽  
...  

The dynamic mechanical behavior of thermoplastic composites over a wide range of strain rates has become an important research topic for extreme environmental survivability in the fields of military protection, aircraft safety, and aerospace engineering. However, the dynamic compression response in the out-of-plane direction, which is one of the most important loading conditions resulting in the damage of composite materials, has not been investigated thoroughly when compared to in-plane compression and tensile behavior under high strain rates. Thus, we used split Hopkinson pressure bar (SHPB) tests to conduct the out-of-plane compression test of cross-ply carbon fiber-reinforced polyetheretherketone (AS4/PEEK) composite laminates. Afterward, the damage mechanism under different strain rates was characterized by the macrostructure morphologies and scanning electron microscope micrographs. Two major cases of the incomplete failure condition and complete failure condition were discussed. Dynamic stress-strain curves expound the strain rates dependencies of elastic modulus, failure strength, and failure strain. An obvious spring-back process could be observed under incomplete failure tests. For the complete failure tests, secondary loading could be observed by reconstructing and comparing the dynamic response history. Lastly, various failure modes that occurred in different loading strain rates illustrate that the damage mechanism also shows obvious strain rate sensitivity.


2002 ◽  
Author(s):  
Shibin Wang ◽  
Jingwei Tong ◽  
C. Yue ◽  
Linan Li ◽  
Min Shen

2017 ◽  
Vol 25 (5) ◽  
pp. 371-380 ◽  
Author(s):  
Luca Di Landro ◽  
Aurelio Montalto ◽  
Paolo Bettini ◽  
Stefania Guerra ◽  
Fabrizio Montagnoli ◽  
...  

Defects, such as voids and delaminations, may significantly reduce the mechanical performance of components made of composite laminates. Distributed voids and porosity are generated during composite processing and are influenced by prepreg characteristics as well as by curing cycle parameters. On the basis of rheological and thermal analyses, as well as observations of laminates produced by different processing conditions, curing pressure appears the most influent factor affecting the void content. This work compares different methods for void analysis and quantitative evaluation (ultrasonic scan, micro-computed tomography, acid digestion, SEM image analysis) evidencing their applicative limitations. Carbon/epoxy laminates were produced in autoclave or oven by vacuum bag technique, using different processing conditions, so that void contents ranging from 0% to 7% volume were obtained. Effects of porosity over laminates mechanical performances are analysed. The results of tensile and compressive tests are discussed, considering the effect that different curing cycles have over void content as well as over fibre/resin fraction. Interlaminar strength, as measured by short beam shear tests, which is a matrix-dominated property, exhibits a reduction of failure strength up to 25% in laminates with the highest void content, compared to laminates with no porosity.


Sign in / Sign up

Export Citation Format

Share Document