beam shear
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 51)

H-INDEX

18
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7203
Author(s):  
Ibrahim A. Sharaky ◽  
Ahmed S. Elamary ◽  
Yasir M. Alharthi

It is essential to make openings in structural concrete elements to accommodate mechanical and electrical needs. To study the effect of these openings on the performance of reinforced concrete (RC) elements, a numerical investigation was performed and validated using previous experimental work. The effect of the position and dimension of the opening and the beam length on the response of the beams, loads capacities, and failure modes was studied. The simulated RC beams showed different responses, loads capacities, and failure modes depending on the position and dimension of the opening. The transversal near support opening (TNSH) and longitudinal holes (LH) showed lower effects on the load capacities of the beams than the transversal near center opening (TNCH). The supreme reduction percentages of the load capacity (µu%) for beams with TNCH and TNSH were 37.21% and 30.34%, respectively (opening size = 150 × 150 mm2). In addition, the maximum µu% for beam with LH was 17.82% (opening size = 25% of the beam size). The TNSH with a width of less than 18.18% of the beam shear span (550 mm) had trivial effects on the beam’s load capacities (the maximum µu% = 1.26%). Although the beams with combined LH and TNCH or LH and TNSH showed different failure modes, they experienced nearly the same load reductions. Moreover, the length of the beam (solid or hollow) had a great effect on its failure mode and load capacity. Finally, equations were proposed and validated to calculate the yield load and post-cracking deflection for the concrete beams with a longitudinal opening.


2021 ◽  
pp. 105678952110566
Author(s):  
Yajun Chen ◽  
Jinchuan Yang ◽  
Fusheng Wang ◽  
Jianshu Peng

The short beam shear performance of GLARE 3A-3/2 laminates with adhesive layers was investigated by combining the short beam test and the digital image correlation technique. The failure behavior was further analyzed based on finite element simulation and micro failure morphology. The results show an 8% and 58% difference in the short beam strength and bending displacement at failure of laminates along two orthogonal directions; The damage behavior of laminates is determined by the bottom unidirectional glass fiber reinforced plastic (GFRP) layers. The two typical failure modes are matrix and fiber fracture in the GFRP layer caused by local bending deformation, and interlaminar delamination between GFRP layers; The distribution of surface strain [Formula: see text] indicates the damage initiation and evolution process. The simulation result of the finite element model established in ABAQUS/Explicit shows consistency with digital image correlation analysis, which provides an effective method to predict the damage behavior of specimens with different ply structures.


2021 ◽  
Vol 907 (1) ◽  
pp. 012004
Author(s):  
Daud Rahmat Wiyono ◽  
Roi Milyardi ◽  
Yosafat Aji Pranata ◽  
Anang Kristianto

Abstract Shear walls modelling as planar or assembly have different assumption in behaviour that will give different responses in forces. Shear wall planar modelling as individual walls which each wall was modelled as a vertical beam. Shear Wall assembly modelling as a combined unit to be represented by one beam element. The application of shear wall assembly is placed in elevator shafts in buildings or stairwell. [1]. In ETABS program, there are two types modelling shear wall are planar walls and wall assemblies. The analysis is based on three types of design section that are Simplified Compression (C) and Tension (T), Uniform Reinforcing and General Reinforcing. The purpose of this study is comparing the planar walls Simplified C and T with planar walls Uniform Reinforcing and wall assemblies Uniform Reinforcing. The conclusion for longitudinal reinforcement are, first, planar walls Simplified C and T is 40 to 96 % larger than wall assemblies, except pier P6 is 28 % smaller, second, planar walls Uniform Reinforcing is larger than 7 to 33 % wall assemblies Uniform Reinforcing, except pier P6 is 39 % smaller, third, the planar walls Simplified C and T, planar walls Uniform Reinforcing transversal reinforcement are 1 to 8 % larger than wall assemblies Uniform Reinforcing, except pier P6 is 51 % smaller.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5332
Author(s):  
Denis Cartié ◽  
Marine Lan ◽  
Peter Davies ◽  
Christophe Baley

Automated fiber placement (AFP), once limited to aerospace, is gaining acceptance and offers great potential for marine structures. This paper describes the influence of manufacturing defects, gaps, and overlaps, on the out-of-plane properties of carbon/epoxy composites manufactured by AFP. Apparent interlaminar shear strength measured by short beam shear tests was not affected by the presence of defects. However, the defects do affect delamination propagation. Under Mode I (tension) loading a small crack arrest effect is noted, resulting in higher apparent fracture energies, particularly for specimens manufactured using a caul plate. Under Mode II (in-plane shear) loading there is a more significant effect with increased fracture resistance, as stable propagation for specimens with small gaps changes to arrest with unstable propagation for larger gaps.


2021 ◽  
pp. 002199832110386
Author(s):  
Anandakumar Paramasivam ◽  
Mallina Venkata Timmaraju ◽  
Ramachandran Velmurugan

Over-molded composites (consist of short and continuous fiber composites) have been extensively used in automotive structures because of their lightweight, high strength-to-weight ratio, and ability to make complex profiles. However, the poor interfacial bonding between short and continuous fiber composites reduces the performance of the over-molded composites. The preheating process has been utilized to enhance the interface bond of the over-molded composites. In the present study, the influence of preheating on the fracture behavior was studied by conducting tensile, flexural, short beam shear, mode I and mode II interlaminar fracture tests on over-molded short/continuous fiber polypropylene composites. The experimental results of the preheated specimens demonstrated an enhancement of tensile, flexural and short beam shear strength by 15%, 221% and 17%, respectively, compared with non-preheated specimens. Further, preheating enhanced the mode I and mode II interlaminar propagation fracture toughness by 655% and 44%, respectively compared with non-preheated specimens.


Author(s):  
Maikson L. P Tonatto ◽  
José Ricardo Tarpani ◽  
Sandro C. Amico

Sign in / Sign up

Export Citation Format

Share Document