scholarly journals Initial clinical laboratory experience in noninvasive prenatal testing for fetal aneuploidy from maternal plasma DNA samples

2013 ◽  
Vol 33 (6) ◽  
pp. 569-574 ◽  
Author(s):  
Tracy Futch ◽  
John Spinosa ◽  
Sucheta Bhatt ◽  
Eileen Feo ◽  
Richard P. Rava ◽  
...  
2015 ◽  
Vol 61 (10) ◽  
pp. 1305-1306 ◽  
Author(s):  
Suk Hang Cheng ◽  
Peiyong Jiang ◽  
Kun Sun ◽  
Yvonne K Y Cheng ◽  
K C Allen Chan ◽  
...  

2017 ◽  
Vol 63 (2) ◽  
pp. 513-524 ◽  
Author(s):  
Winnie W I Hui ◽  
Peiyong Jiang ◽  
Yu K Tong ◽  
Wing-Shan Lee ◽  
Yvonne K Y Cheng ◽  
...  

Abstract BACKGROUND Researchers have developed approaches for the noninvasive prenatal testing of single gene diseases. One approach that allows for the noninvasive assessment of both maternally and paternally inherited mutations involves the analysis of single nucleotide polymorphisms (SNPs) in maternal plasma DNA with reference to parental haplotype information. In the past, parental haplotypes were resolved by complex experimental methods or inferential approaches, such as through the analysis of DNA from other affected family members. Recently, microfluidics-based linked-read sequencing technology has become available and allows the direct haplotype phasing of the whole genome rapidly. We explored the feasibility of applying this direct haplotyping technology in noninvasive prenatal testing. METHODS We first resolved the haplotypes of parental genomes with the use of linked-read sequencing technology. Then, we identified SNPs within and flanking the genes of interest in maternal plasma DNA by targeted sequencing. Finally, we applied relative haplotype dosage analysis to deduce the mutation inheritance status of the fetus. RESULTS Haplotype phasing and relative haplotype dosage analysis of 12 out of 13 families were successfully achieved. The mutational status of these 12 fetuses was correctly classified. CONCLUSIONS High-throughput linked-read sequencing followed by maternal plasma-based relative haplotype dosage analysis represents a streamlined approach for noninvasive prenatal testing of inherited single gene diseases. The approach bypasses the need for mutation-specific assays and is not dependent on the availability of DNA from other affected family members. Thus, the approach is universally applicable to pregnancies at risk for the inheritance of a single gene disease.


2020 ◽  
Vol 7 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Tze Kin Lau ◽  
Xiaofan Zhu ◽  
Yvonne Ka Yin Kwok ◽  
Tak Yeung Leung ◽  
Kwong Wai Choy

2018 ◽  
Vol 64 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Nilesh G Dharajiya ◽  
Daniel S Grosu ◽  
Daniel H Farkas ◽  
Ron M McCullough ◽  
Eyad Almasri ◽  
...  

Abstract BACKGROUND Noninvasive prenatal testing (NIPT) uses cell-free DNA (cfDNA) as an analyte to detect copy-number alterations in the fetal genome. Because maternal and fetal cfDNA contributions are comingled, changes in the maternal genome can manifest as abnormal NIPT results. Circulating tumor DNA (ctDNA) present in cases of maternal neoplasia has the potential to distort the NIPT readout to a degree that prevents interpretation, resulting in a nonreportable test result for fetal aneuploidy. METHODS NIPT cases that showed a distortion from normal euploid genomic representation were communicated to the caregiving physician as nonreportable for fetal aneuploidy. Follow-up information was subsequently collected for these cases. More than 450000 pregnant patients who submitted samples for clinical laboratory testing >3 years are summarized. Additionally, in-depth analysis was performed for >79000 research-consented samples. RESULTS In total, 55 nonreportable NIPT cases with altered genomic profiles were cataloged. Of these, 43 had additional information available to enable follow-up. A maternal neoplasm was confirmed in 40 of these cases: 18 malignant, 20 benign uterine fibroids, and 2 with radiological confirmation but without pathological classification. CONCLUSIONS In a population of pregnant women who submitted a blood sample for cfDNA testing, an abnormal genomic profile not consistent with fetal abnormalities was detected in about 10 out of 100000 cases. A subset of these observations (18 of 43; 41.9%) was attributed to maternal malignant neoplasms. These observational results suggest the need for a controlled trial to evaluate the potential of using cfDNA as an early biomarker of cancer.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Luming Sun ◽  
Lei Zhang ◽  
Jia Zhou ◽  
Xiaonan Yang ◽  
Tao Duan ◽  
...  

AbstractMaternal plasma DNA sequencing based noninvasive prenatal testing (NIPT) has been proven to be highly accurate in the detection of trisomy 21, 18, 13, X and Y, however, few reports have been made on its detection efficiency of rare complex aneuploidies. Here, we report a case of fetal trisomy 9 mosaicism identified by using NIPT, which may provide useful information for the further integration of NIPT into prenatal screening and diagnosis practice.


2017 ◽  
Vol 63 (2) ◽  
pp. 495-502 ◽  
Author(s):  
Stephanie C Y Yu ◽  
Peiyong Jiang ◽  
K C Allen Chan ◽  
Brigitte H W Faas ◽  
Kwong W Choy ◽  
...  

Abstract BACKGROUND Noninvasive prenatal detection of fetal subchromosomal copy number aberrations (CNAs) can be achieved through massively parallel sequencing of maternal plasma DNA. However, when a mother herself is a carrier of a CNA, one cannot discern if her fetus has inherited the CNA. In addition, false-positive results would become more prevalent when more subchromosomal regions are analyzed. METHODS We used a strategy that combined count- and size-based analyses of maternal plasma DNA for the detection of fetal subchromosomal CNAs in 7 target regions for 10 test cases. RESULTS For the 5 cases in which CNAs were present only in the fetus, the size-based approach confirmed the aberrations detected by the count-based approach. For the 5 cases in which the mother herself carried an aberration, we successfully deduced that 3 of the fetuses had inherited the aberrations and that the other 2 fetuses had not inherited the aberrations. No false positives were observed in this cohort. CONCLUSIONS Combined count- and size-based analysis of maternal plasma DNA permits the noninvasive elucidation of whether a fetus has inherited a CNA from its mother who herself is a carrier of the CNA. This strategy has the potential to improve the diagnostic specificity of noninvasive prenatal testing.


Sign in / Sign up

Export Citation Format

Share Document