Living radical polymerization. II. Improved atom transfer radical polymerization of acrylamide in aqueous glycerol media with a novel pentamethyldiethylenetriamine-based soluble copper(I) complex catalyst system

2004 ◽  
Vol 42 (10) ◽  
pp. 2483-2494 ◽  
Author(s):  
Suresh K. Jewrajka ◽  
Broja M. Mandal
Synlett ◽  
2018 ◽  
Vol 29 (12) ◽  
pp. 1543-1551 ◽  
Author(s):  
Mao Chen ◽  
Honghong Gong ◽  
Yu Gu

Fluorinated polymers are important materials for applications in many areas. This article summarizes the development of controlled/living radical polymerization (CRP) of semifluorinated (meth)acrylates, and briefly introduces their reaction mechanisms. While the classical CRP such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and nitroxide-mediated radical polymerization (NMP) have promoted the preparation of semifluorinated polymers with tailor-designed architectures, recent development of photo-CRP has led to unprecedented accuracy and monomer scope. We expect that synthetic advances will facilitate the engineering of advanced fluorinated materials with unique properties.1 Introduction2 Atom Transfer Radical Polymerization3 Reversible Addition-Fragmentation Chain Transfer Polymerization4 Nitroxide-Mediated Radical Polymerization5 Photo-CRP Mediated with Metal Complexes6 Metal-free Photo-CRP7 Conclusion


2013 ◽  
Vol 364 ◽  
pp. 679-683
Author(s):  
Chang Hao Yan ◽  
Zhi Jiao Zhang ◽  
Hai Yan Chen ◽  
Zhong Yi Xie ◽  
Ting Zhu ◽  
...  

The polystyrene with end group of Br was synthesized by using MBrP as the initiator, CuBr/ PMDETA as the catalyst system according to atom transfer radical polymerization (ATRP). The effect of reaction temperature was studied and the system was confirmed as the active polymerization. Then PS-Br and CuBr/ PMDETA were respectively used as macroinitiator and catalyst to polymerize tBMA according to atom transfer radical polymerization (ATRP). The structure of the product was characterized by GPCFTIR1H-NMR. The amphiphilic block copolymer was obtained after hydrolysis. And the honeycomb porous film was prepared by PS-b-PMAA through using breath figure method.


2015 ◽  
Vol 116 (4) ◽  
pp. 1803-1949 ◽  
Author(s):  
Cyrille Boyer ◽  
Nathaniel Alan Corrigan ◽  
Kenward Jung ◽  
Diep Nguyen ◽  
Thuy-Khanh Nguyen ◽  
...  

2006 ◽  
Vol 11-12 ◽  
pp. 461-464 ◽  
Author(s):  
Shu Xian Shi ◽  
Jian Liu ◽  
Yu Zheng Xia ◽  
Shu Ke Jiao ◽  
Xiao Yu Li

In order to improve the hydrophilicity of poly (D,L-latide) (PDLLA), a novel amphiphilic ABA-type triblock copolymers of poly-N-vinylpyrrolidone (A) and poly (D, L-lactide) (B), were successfully synthesized by atom transfer radical polymerization (ATRP) using N-vinylpyrrolidone (VP) as monomer, bromide-terminated poly (D,L-latide) oligomer (Br-PDLLA-Br) as functional macromolecular initiator which was prepared when hydroxy-terminated poly(D,L-latide) oligomer (HO-PDLLA-OH) reacted with 2-bromopropanoyl bromide, CuBr/2,2’-bipyridine complex as the catalyst system. The resulting copolymers were characterized by various analytical techniques. The results showed that the introduction of poly (N-vinylpyrrolidone) (PVP) segments into polylactide enhanced the surface hydrophilicity of the copolymers remarkably and amphiphilic polymer can self-assemble into core-shell structure (polymer micelle) in water by the balance of the hydrophilic and hydrophobic interaction.


Sign in / Sign up

Export Citation Format

Share Document