Degrading Mountain Permafrost in Southern Norway: Spatial and Temporal Variability of Mean Ground Temperatures, 1999-2009

2011 ◽  
Vol 22 (4) ◽  
pp. 361-377 ◽  
Author(s):  
Ketil Isaksen ◽  
Rune Strand Ødegård ◽  
Bernd Etzelmüller ◽  
Christin Hilbich ◽  
Christian Hauck ◽  
...  
2011 ◽  
Vol 5 (2) ◽  
pp. 811-854 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler

Abstract. A heat flow model was used to simulate both past and future ground temperatures of mountain permafrost in Southern Norway. A reconstructed air temperature series back to 1860 was used to evaluate the permafrost evolution since the end of the Little Ice Age in the region. The impact of a changing climate on discontinuous mountain permafrost until 2100 is predicted by using downscaled temperatures from an ensemble of downscaled climate models for the A1B scenario. From 13 borehole locations two consecutive years of ground temperature, air temperature and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates having different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860–2010 and an additional warming of +2.8 °C towards 2100 in air temperature, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by about 0.5–5 m and >10 m for the sites Juvvass and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a likelihood of 55–75% given the chosen A1B scenario.


2012 ◽  
Vol 6 (3) ◽  
pp. 553-571 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler ◽  
S. Westermann

Abstract. This study aims at quantifying the thermal response of mountain permafrost in southern Norway to changes in climate since 1860 and until 2100. A transient one-dimensional heat flow model was used to simulate ground temperatures and associated active layer thicknesses for nine borehole locations, which are located at different elevations and in substrates with different thermal properties. The model was forced by reconstructed air temperatures starting from 1860, which approximately coincides with the end of the Little Ice Age in the region. The impact of climate warming on mountain permafrost to 2100 is assessed by using downscaled air temperatures from a multi-model ensemble for the A1B scenario. Borehole records over three consecutive years of ground temperatures, air temperatures and snow cover data served for model calibration and validation. With an increase of air temperature of ~1.5 °C over 1860–2010 and an additional warming of ~2.8 °C until 2100, we simulate the evolution of ground temperatures for each borehole location. In 1860 the lower limit of permafrost was estimated to be ca. 200 m lower than observed today. According to the model, since the approximate end of the Little Ice Age, the active-layer thickness has increased by 0.5–5 m and >10 m for the sites Juvvasshøe and Tron, respectively. The most pronounced increases in active layer thickness were modelled for the last two decades since 1990 with increase rates of +2 cm yr−1 to +87 cm yr−1 (20–430%). According to the A1B climate scenario, degradation of mountain permafrost is suggested to occur throughout the 21st century at most of the sites below ca. 1800 m a.s.l. At the highest locations at 1900 m a.s.l., permafrost degradation is likely to occur with a probability of 55–75% by 2100. This implies that mountain permafrost in southern Norway is likely to be confined to the highest peaks in the western part of the country.


2012 ◽  
Vol 6 (1) ◽  
pp. 341-385 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler ◽  
S. Westermann

Abstract. A transient heat flow model was used to simulate both past and future ground temperatures of mountain permafrost and associated active layer thickness in Southern Norway. The model was forced by reconstructed air temperature starting from 1860, approximately coinciding with the Little Ice Age in the region. The impact of climate warming on mountain permafrost until 2100 is assessed by using downscaled air temperatures from a multi-model ensemble for the A1B scenario. For 13 borehole locations, records over three consecutive years of ground temperatures, air temperatures and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates with different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860–2010 and an additional warming of +2.8 °C until 2100, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by 0.5–5 m and >10 m for the sites Juvvasshøe and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a probability of 55–75% given the chosen A1B scenario.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 847 ◽  
Author(s):  
Weidong Liu ◽  
Matthijs Tollenaar ◽  
Greg Stewart ◽  
William Deen

Sign in / Sign up

Export Citation Format

Share Document