scholarly journals Modelling borehole temperatures in Southern Norway – insights into permafrost dynamics during the 20th and 21st century

2012 ◽  
Vol 6 (3) ◽  
pp. 553-571 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler ◽  
S. Westermann

Abstract. This study aims at quantifying the thermal response of mountain permafrost in southern Norway to changes in climate since 1860 and until 2100. A transient one-dimensional heat flow model was used to simulate ground temperatures and associated active layer thicknesses for nine borehole locations, which are located at different elevations and in substrates with different thermal properties. The model was forced by reconstructed air temperatures starting from 1860, which approximately coincides with the end of the Little Ice Age in the region. The impact of climate warming on mountain permafrost to 2100 is assessed by using downscaled air temperatures from a multi-model ensemble for the A1B scenario. Borehole records over three consecutive years of ground temperatures, air temperatures and snow cover data served for model calibration and validation. With an increase of air temperature of ~1.5 °C over 1860–2010 and an additional warming of ~2.8 °C until 2100, we simulate the evolution of ground temperatures for each borehole location. In 1860 the lower limit of permafrost was estimated to be ca. 200 m lower than observed today. According to the model, since the approximate end of the Little Ice Age, the active-layer thickness has increased by 0.5–5 m and >10 m for the sites Juvvasshøe and Tron, respectively. The most pronounced increases in active layer thickness were modelled for the last two decades since 1990 with increase rates of +2 cm yr−1 to +87 cm yr−1 (20–430%). According to the A1B climate scenario, degradation of mountain permafrost is suggested to occur throughout the 21st century at most of the sites below ca. 1800 m a.s.l. At the highest locations at 1900 m a.s.l., permafrost degradation is likely to occur with a probability of 55–75% by 2100. This implies that mountain permafrost in southern Norway is likely to be confined to the highest peaks in the western part of the country.

2012 ◽  
Vol 6 (1) ◽  
pp. 341-385 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler ◽  
S. Westermann

Abstract. A transient heat flow model was used to simulate both past and future ground temperatures of mountain permafrost and associated active layer thickness in Southern Norway. The model was forced by reconstructed air temperature starting from 1860, approximately coinciding with the Little Ice Age in the region. The impact of climate warming on mountain permafrost until 2100 is assessed by using downscaled air temperatures from a multi-model ensemble for the A1B scenario. For 13 borehole locations, records over three consecutive years of ground temperatures, air temperatures and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates with different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860–2010 and an additional warming of +2.8 °C until 2100, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by 0.5–5 m and >10 m for the sites Juvvasshøe and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a probability of 55–75% given the chosen A1B scenario.


2011 ◽  
Vol 5 (2) ◽  
pp. 811-854 ◽  
Author(s):  
T. Hipp ◽  
B. Etzelmüller ◽  
H. Farbrot ◽  
T. V. Schuler

Abstract. A heat flow model was used to simulate both past and future ground temperatures of mountain permafrost in Southern Norway. A reconstructed air temperature series back to 1860 was used to evaluate the permafrost evolution since the end of the Little Ice Age in the region. The impact of a changing climate on discontinuous mountain permafrost until 2100 is predicted by using downscaled temperatures from an ensemble of downscaled climate models for the A1B scenario. From 13 borehole locations two consecutive years of ground temperature, air temperature and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates having different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860–2010 and an additional warming of +2.8 °C towards 2100 in air temperature, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by about 0.5–5 m and >10 m for the sites Juvvass and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a likelihood of 55–75% given the chosen A1B scenario.


2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 462
Author(s):  
Alyona A. Shestakova ◽  
Alexander N. Fedorov ◽  
Yaroslav I. Torgovkin ◽  
Pavel Y. Konstantinov ◽  
Nikolay F. Vasyliev ◽  
...  

The purpose of this article was to compile four separate digital thematic maps of temperature and ice content of permafrost, the active layer thickness, and cryogenic processes in Yakutia as a basis for assessing changes to modern climate changes and anthropogenic disturbances. In this work, materials on permafrost were used, serving as the basis for compiling a permafrost landscape map of the Republic of Sakha (Yakutia). The maps were compiled using ArcGIS software, which supports attribute table mapping. The ground temperature and active layer thickness maps reflected landscape zonality and regional differences. Peculiarities of genetic types of Quaternary deposits and climatic conditions reflected the ice content of surface sediments and cryogenic process distribution maps. One of the most common is ground temperatures from −2.1 to −4.0 °C, which were found to occupy about 37.4% of the territory of Yakutia. More than half of the region was found to be occupied by permafrost landscapes with a limited thickness of the active layer up to 1.1 m. Ice-rich permafrost (more than 0.4 in ice content) was found to be typical for about 40% of the territory. Thermokarst is the most hazardous process that occurs in half of Yakutia.


2007 ◽  
Vol 44 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Ming-ko Woo ◽  
Michael Mollinga ◽  
Sharon L Smith

The variability of maximum active layer thickness in boreal and tundra environments has important implications for hydrological processes, terrestrial and aquatic ecosystems, and the integrity of northern infrastructure. For most planning and management purposes, the long-term probability distribution of active layer thickness is of primary interest. A robust method is presented to calculate maximum active layer thickness, employing the Stefan equation to compute phase change of moisture in soils and using air temperature as the sole climatic forcing variable. Near-surface ground temperatures (boundary condition for the Stefan equation) were estimated based on empirical relationships established for several sites in the Mackenzie valley. Simulations were performed for typically saturated mineral soils, overlain with varying thickness of peat in boreal and tundra environments. The probability distributions of simulated maximum active layer thickness encompass the range of measured thaw depths provided by field data. The effects of climate warming under A2 and B2 scenarios for 2050 and 2100 were investigated. Under the A2 scenario in 2100, the simulated median thaw depth under a thin organic cover may increase by 0.3 m, to reach 1 m depth for a tundra site and 1.6 m depth for a boreal site. The median thaw depth in 2100 is dampened by about 50% under a 1 m thick organic layer. Without an insulating organic cover, thaw penetration can increase to reach 1.7 m at the tundra site. The simulations provide quantitative support that future thaw penetration in permafrost terrain will deepen differentially depending on location and soil.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 232 ◽  
Author(s):  
Alexey Maslakov ◽  
Natalia Shabanova ◽  
Dmitry Zamolodchikov ◽  
Vasili Volobuev ◽  
Gleb Kraev

Permafrost degradation caused by contemporary climate change significantly affects arctic regions. Active layer thickening combined with the thaw subsidence of ice-rich sediments leads to irreversible transformation of permafrost conditions and activation of exogenous processes, such as active layer detachment, thermokarst and thermal erosion. Climatic and permafrost models combined with a field monitoring dataset enable the provision of predicted estimations of the active layer and permafrost characteristics. In this paper, we present the projections of active layer thickness and thaw subsidence values for two Circumpolar Active Layer Monitoring (CALM) sites of Eastern Chukotka coastal plains. The calculated parameters were used for estimation of permafrost degradation rates in this region for the 21st century under various IPCC climate change scenarios. According to the studies, by the end of the century, the active layer will be 6–13% thicker than current values under the RCP (Representative Concentration Pathway) 2.6 climate scenario and 43–87% under RCP 8.5. This process will be accompanied by thaw subsidence with the rates of 0.4–3.7 cm∙a−1. Summarized surface level lowering will have reached up to 5 times more than current active layer thickness. Total permafrost table lowering by the end of the century will be from 150 to 310 cm; however, it will not lead to non-merging permafrost formation.


2016 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approx. 16 000 km2 in the Lena River Delta in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products (MODIS Land Surface Temperature, MODIS Snow Extent, GlobSnow Snow Water Equivalent) and fields of meteorological variables from the ERA-interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River Delta. A comparison of the model forcing to in-situ measurements on Samoylov Island in the southern part of the study area yields a satisfactory agreement both for surface temperature, snow depth and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in in the Lena River Delta which suggests that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1 to 1.5 °C. The warmest ground temperatures are calculated for grid cells close to the main river channels in the south, as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the coldest temperatures are modeled for the eastern part, an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in-situ observations indicates that the satellite-based model scheme is generally capable of estimating the thermal state of permafrost and its time evolution in the Lena River Delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.


2006 ◽  
Vol 18 (3) ◽  
pp. 323-333 ◽  
Author(s):  
N. Cannone ◽  
J.C. Ellis Evans ◽  
R. Strachan ◽  
M. Guglielmin

In the summer 2000–01, thermal monitoring of the permafrost active layer within various terrestrial sites covered by lichen, moss or grasses was undertaken at Jubany (King George Island) and Signy Island in the Maritime Antarctic. The results demonstrated the buffering effect of vegetation on ground surface temperature (GST) and the relationship between vegetation and active layer thickness. Vegetation type and coverage influenced the GST in both locations with highest variations and values in the Deschampsia and Usnea sites and the lowest variations and values in the Jubany moss site. Active layer thickness ranged from 57 cm (Jubany moss site) to 227 cm (Signy Deschampsia site). Active layer thickness data from Signy were compared with data collected at the same location four decades earlier. Using a regression equation for air temperature versus ground surface temperatures the patterns of changing air temperature over time suggest that the active layer thickness increased c. 30 cm between 1963 and 1990 and then decreased 30 cm between 1990 and 2000. The documented increased rate of warming (2°C ± 1) since 1950 for air temperatures recorded in the South Orkney Islands suggests that the overall trend of active layer thickness increase will be around 1 cm year−1.


Sign in / Sign up

Export Citation Format

Share Document