scholarly journals Modulation of vascular contraction via soluble guanylate cyclase signaling in a novel ex vivo method using rat precision‐cut liver slices

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Anouk Oldenburger ◽  
Gerald Birk ◽  
Marco Schlepütz ◽  
Andre Broermann ◽  
Birgit Stierstorfer ◽  
...  
2019 ◽  
Vol 19 (18) ◽  
pp. 1544-1557 ◽  
Author(s):  
Sijia Xiao ◽  
Qianbin Li ◽  
Liqing Hu ◽  
Zutao Yu ◽  
Jie Yang ◽  
...  

Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.


Author(s):  
Michael G. Hahn ◽  
Thomas Lampe ◽  
Sherif El Sheikh ◽  
Nils Griebenow ◽  
Elisabeth Woltering ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


Author(s):  
Glen R. Rennie ◽  
Timothy C. Barden ◽  
Sylvie G. Bernier ◽  
Andrew Carvalho ◽  
Renee Deming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document