scholarly journals Current Modulation of Guanylate Cyclase Pathway Activity—Mechanism and Clinical Implications

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.

2016 ◽  
Vol 310 (11) ◽  
pp. R1073-R1080 ◽  
Author(s):  
Qiuyu Yao ◽  
Yaqian Huang ◽  
Angie Dong Liu ◽  
Mingzhu Zhu ◽  
Jia Liu ◽  
...  

The present study was designed to explore the role of soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/PKG pathway in sulfur dioxide (SO2)-induced vasodilation. We showed that SO2 induced a concentration-dependent relaxation of phenylephrine (PE)-precontracted rat aortic rings in association with an increase in cGMP concentration, whereas l-aspartic acid β-hydroxamate (HDX), an inhibitor of SO2 synthase, contracted rings in a dose-dependent manner. Pretreatment of aortic rings with the sGC inhibitor ODQ (30 μM) attenuated the vasodilatory effects of SO2, suggesting the involvement of cGMP pathway in SO2-induced vasodilation. Mechanistically, SO2 upregulated the protein levels of sGC and PKG dimers, while HDX inhibited it, indicating SO2 could promote cGMP synthesis through sGC activation. Furthermore, the dimerization of sGC and PKG and vasodilation induced by SO2 in precontracted rings were significantly prevented by thiol reductants dithiothreitol (DTT). In addition, SO2 reduced the activity of phosphodiesterase type 5 (PDE5), a cGMP-specific hydrolytic enzyme, implying that SO2 elevated cGMP concentration by inhibiting its hydrolysis. Hence, SO2 exerted its vasodilatory effects at least partly by promoting disulfide-dependent dimerization of sGC and PKG, resulting in an activated sGC/cGMP/PKG pathway in blood vessels. These findings revealed a new mode of action and mechanisms by which SO2 regulated the vascular tone.


2018 ◽  
Vol 13 (1) ◽  
pp. 35 ◽  
Author(s):  
Hiroshi Watanabe ◽  

Pulmonary arterial hypertension is a chronic and life-threatening disease that if left untreated is fatal. Current therapies include stimulating the nitric oxide–soluble guanylate cyclase (sGC)–cyclic guanosine monophosphate axis, improving the prostacyclin pathway and inhibiting the endothelin pathway. Phosphodiesterase type 5 inhibitors, such as sildenafil, and the sGC stimulator riociguat are currently used in the treatment of pulmonary arterial hypertension. This article discusses the similarities and differences between phosphodiesterase type 5 inhibitors and sGC stimulator based on pharmacological action and clinical trials, and considers which is better for the treatment of pulmonary arterial hypertension.


2019 ◽  
Vol 19 (18) ◽  
pp. 1544-1557 ◽  
Author(s):  
Sijia Xiao ◽  
Qianbin Li ◽  
Liqing Hu ◽  
Zutao Yu ◽  
Jie Yang ◽  
...  

Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.


2021 ◽  
Vol 20 (6) ◽  
pp. 3035
Author(s):  
Zh. D. Kobalava ◽  
P. V. Lazarev

Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.


Author(s):  
Chieh-Hsi Wu ◽  
Chun-Hsu Pan ◽  
Ming-Jyh Sheu

Nitric oxide (NO) is an essential endogenous vasodilator to maintain vascular homeostasis, whose effects are mainly mediated by NO-dependent soluble guanylate cyclase (sGC) which catalyzes the synthesis of cyclic guanosine monophosphate (cGMP), a critical mediator of vascular relaxation. YC-1, a novel NO-independent sGC stimulator, was first introduced as an inhibitor of platelet aggregation and thrombosis. Accumulating studies revealed that YC-1 has multiple medication potentials to use for a broad spectrum of diseases ranging from cardiovascular diseases to cancers. In contrast to NO donors, YC-1 has a more favorable safety profile and low medication tolerance. In this chapter, we introduce canonical and pathological roles of NO, review activations, and regulatory mechanisms of YC-1 on NO-independent sGC/cGMP pathway and present the potential pharmacological applications and molecular mechanisms of YC-1.


Sign in / Sign up

Export Citation Format

Share Document