cyclase activator
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 2)

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1453
Author(s):  
Alex Vasilev ◽  
Roba Sofi ◽  
Stuart J. Smith ◽  
Ruman Rahman ◽  
Anja G. Teschemacher ◽  
...  

One of the most challenging problems in the treatment of glioblastoma (GBM) is the highly infiltrative nature of the disease. Infiltrating cells that are non-resectable are left behind after debulking surgeries and become a source of regrowth and recurrence. To prevent tumor recurrence and increase patient survival, it is necessary to cleanse the adjacent tissue from GBM infiltrates. This requires an innovative local approach. One such approach is that of photodynamic therapy (PDT) which uses specific light-sensitizing agents called photosensitizers. Here, we show that tetramethylrhodamine methyl ester (TMRM), which has been used to asses mitochondrial potential, can be used as a photosensitizer to target GBM cells. Primary patient-derived GBM cell lines were used, including those specifically isolated from the infiltrative edge. PDT with TMRM using low-intensity green light induced mitochondrial damage, an irreversible drop in mitochondrial membrane potential and led to GBM cell death. Moreover, delayed photoactivation after TMRM loading selectively killed GBM cells but not cultured rat astrocytes. The efficacy of TMRM-PDT in certain GBM cell lines may be potentiated by adenylate cyclase activator NKH477. Together, these findings identify TMRM as a prototypical mitochondrially targeted photosensitizer with beneficial features which may be suitable for preclinical and clinical translation.


Biochemistry ◽  
2021 ◽  
Author(s):  
Diana Cudia ◽  
Graham P. Roseman ◽  
Tufa E. Assafa ◽  
Manisha Kumari Shahu ◽  
Alexander Scholten ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8731
Author(s):  
James B. Ames

Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.


Phytomedicine ◽  
2021 ◽  
pp. 153701
Author(s):  
Chuang Xiao ◽  
Sha Cheng ◽  
Haochang Lin ◽  
Zhiying Weng ◽  
Peihua Peng ◽  
...  

PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001149
Author(s):  
Marta Orlando ◽  
Anton Dvorzhak ◽  
Felicitas Bruentgens ◽  
Marta Maglione ◽  
Benjamin R. Rost ◽  
...  

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Katherine M. Gerber ◽  
Nicholas B. Whitticar ◽  
Daniel R. Rochester ◽  
Kathryn L. Corbin ◽  
William J. Koch ◽  
...  

Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Ramona Weber ◽  
Kiana Schulze ◽  
Trenton Colburn ◽  
Andrew Horn ◽  
K. Sue Hageman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document