Ginzburg-Landau Equations and the Upper Critical Magnetic Field in Graphite Intercalation Compounds

1995 ◽  
Vol 189 (1) ◽  
pp. 185-191 ◽  
Author(s):  
P. Konsin
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tsadik Kidanemariam ◽  
Gebregziabher Kahsay

This research work focuses on the theoretical investigation of the upper critical magnetic field,HC2; Ginzburg-Landau coherence length,ξGL(T); and Ginzburg-Landau penetration depth,λGL(T), for the two-band iron based superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs. By employing the phenomenological Ginzburg-Landau (GL) equation for the two-band superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs, we obtained expressions for the upper critical magnetic field,HC2; GL coherence length,ξGL; and GL penetration depth,λGL, as a function of temperature and the angular dependency of upper critical magnetic field. By using the experimental values in the obtained expressions, phase diagrams of the upper critical magnetic field parallel,HC2∥c, and perpendicular,HC2⊥c, to the symmetry axis (c-direction) versus temperature are plotted. We also plotted the phase diagrams of the upper critical magnetic field,HC2versus the angleθ. Similarly, the phase diagrams of the GL coherence length,ξGL, and GL penetration depth,λGL, parallel and perpendicular to the symmetry axis versus temperature are drawn for the superconductors mentioned above. Our findings are in agreement with experimental observations.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650021 ◽  
Author(s):  
Hong Guo ◽  
Fu-Wen Shu ◽  
Jing-He Chen ◽  
Hui Li ◽  
Ze Yu

We study analytically the [Formula: see text]-wave holographic superconductors with Lifshitz scaling in the presence of external magnetic field. The vortex lattice solutions of the model have also been obtained with different Lifshitz scaling. Our results imply that holographic [Formula: see text]-wave superconductor is indeed a type II one even for different Lifshitz scaling. This is the same as the conventional [Formula: see text]-wave superconductors in the Ginzburg–Landau (GL) theory. Our results also indicates that the dynamical exponent [Formula: see text] cannot affect the droplet solutions, and the vortex lattice solutions receive its effects only in the radial part. This naively implies that it does not have direct influence on the shape of vortex lattice even after the higher-order corrections are taken into consideration (away from the phase transition point [Formula: see text]). However, it has effects on the upper critical magnetic field [Formula: see text] through the fact that a larger [Formula: see text] results in a smaller [Formula: see text] and therefore influences the size (characterized by [Formula: see text]) of the vortex lattices. Furthermore, close comparisons between our results and those of the GL theory reveal the fact that the upper critical magnetic field [Formula: see text] is inversely proportional to the square of the superconducting coherence length [Formula: see text], regardless of the anisotropy between space and time.


Author(s):  
G. Timp ◽  
L. Salamanca-Riba ◽  
L.W. Hobbs ◽  
G. Dresselhaus ◽  
M.S. Dresselhaus

Electron microscopy can be used to study structures and phase transitions occurring in graphite intercalations compounds. The fundamental symmetry in graphite intercalation compounds is the staging periodicity whereby each intercalate layer is separated by n graphite layers, n denoting the stage index. The currently accepted model for intercalation proposed by Herold and Daumas assumes that the sample contains equal amounts of intercalant between any two graphite layers and staged regions are confined to domains. Specifically, in a stage 2 compound, the Herold-Daumas domain wall model predicts a pleated lattice plane structure.


1981 ◽  
Vol 42 (C6) ◽  
pp. C6-298-C6-300
Author(s):  
C. Horie ◽  
H. Miyazaki ◽  
S. Igarashi ◽  
S. Hatakeyama

1983 ◽  
Vol 27 ◽  
Author(s):  
L. Salamanca-Riba ◽  
B.S. Elman ◽  
M.S. Dresselhaus ◽  
T. Venkatesan

ABSTRACTRutherford backscattering spectrometry (RBS) is used to characterize the stoichiometry of graphite intercalation compounds (GIC). Specific application is made to several stages of different donor and acceptor compounds and to commensurate and incommensurate intercalants. A deviation from the theoretical stoichiometry is measured for most of the compounds using this non-destructive method. Within experimental error, the RBS results agree with those obtained from analysis of the (00ℓ) x-ray diffractograms and weight uptake measurements on the same samples.


Sign in / Sign up

Export Citation Format

Share Document