A note on confidence intervals for the restricted mean survival time based on transformations in small sample size

2021 ◽  
Author(s):  
Hiroya Hashimoto ◽  
Akiko Kada
PEDIATRICS ◽  
1989 ◽  
Vol 83 (3) ◽  
pp. A72-A72
Author(s):  
Student

The believer in the law of small numbers practices science as follows: 1. He gambles his research hypotheses on small samples without realizing that the odds against him are unreasonably high. He overestimates power. 2. He has undue confidence in early trends (e.g., the data of the first few subjects) and in the stability of observed patterns (e.g., the number and identity of significant results). He overestimates significance. 3. In evaluating replications, his or others', he has unreasonably high expectations about the replicability of significant results. He underestimates the breadth of confidence intervals. 4. He rarely attributes a deviation of results from expectations to sampling variability, because he finds a causal "explanation" for any discrepancy. Thus, he has little opportunity to recognize sampling variation in action. His belief in the law of small numbers, therefore, will forever remain intact.


2018 ◽  
Vol 15 (5) ◽  
pp. 499-508 ◽  
Author(s):  
Isabelle R Weir ◽  
Ludovic Trinquart

Background/aims Non-inferiority trials with time-to-event outcomes are becoming increasingly common. Designing non-inferiority trials is challenging, in particular, they require very large sample sizes. We hypothesized that the difference in restricted mean survival time, an alternative to the hazard ratio, could lead to smaller required sample sizes. Methods We show how to convert a margin for the hazard ratio into a margin for the difference in restricted mean survival time and how to calculate the required sample size under a Weibull survival distribution. We systematically selected non-inferiority trials published between 2013 and 2016 in seven major journals. Based on the protocol and article of each trial, we determined the clinically relevant time horizon of interest. We reconstructed individual patient data for the primary outcome and fit a Weibull distribution to the comparator arm. We converted the margin for the hazard ratio into the margin for the difference in restricted mean survival time. We tested for non-inferiority using the difference in restricted mean survival time and hazard ratio. We determined the required sample size based on both measures, using the type I error risk and power from the original trial design. Results We included 35 trials. We found evidence of non-proportional hazards in five (14%) trials. The hazard ratio and the difference in restricted mean survival time were consistent regarding non-inferiority testing, except in one trial where the difference in restricted mean survival time led to evidence of non-inferiority while the hazard ratio did not. The median hazard ratio margin was 1.43 (Q1–Q3, 1.29–1.75). The median of the corresponding margins for the difference in restricted mean survival time was −21 days (Q1–Q3, −36 to −8) for a median time horizon of 2.0 years (Q1–Q3, 1–3 years). The required sample size according to the difference in restricted mean survival time was smaller in 71% of trials, with a median relative decrease of 8.5% (Q1–Q3, 0.4%–38.0%). Across all 35 trials, about 25,000 participants would have been spared from enrollment using the difference in restricted mean survival time compared to hazard ratio for trial design. Conclusion The margins for the hazard ratio may seem large but translate to relatively small differences in restricted mean survival time. The difference in restricted mean survival time offers meaningful interpretation and can result in considerable reductions in sample size. Restricted mean survival time-based measures should be considered more widely in the design and analysis of non-inferiority trials with time-to-event outcomes.


2021 ◽  
pp. 174077452097657
Author(s):  
Boris Freidlin ◽  
Chen Hu ◽  
Edward L Korn

Background: Restricted mean survival time methods compare the areas under the Kaplan–Meier curves up to a time [Formula: see text] for the control and experimental treatments. Extraordinary claims have been made about the benefits (in terms of dramatically smaller required sample sizes) when using restricted mean survival time methods as compared to proportional hazards methods for analyzing noninferiority trials, even when the true survival distributions satisfy proportional hazardss. Methods: Through some limited simulations and asymptotic power calculations, the authors compare the operating characteristics of restricted mean survival time and proportional hazards methods for analyzing both noninferiority and superiority trials under proportional hazardss to understand what relative power benefits there are when using restricted mean survival time methods for noninferiority testing. Results: In the setting of low-event rates, very large targeted noninferiority margins, and limited follow-up past [Formula: see text], restricted mean survival time methods have more power than proportional hazards methods. For superiority testing, proportional hazards methods have more power. This is not a small-sample phenomenon but requires a low-event rate and a large noninferiority margin. Conclusion: Although there are special settings where restricted mean survival time methods have a power advantage over proportional hazards methods for testing noninferiority, the larger issue in these settings is defining appropriate noninferiority margins. We find the restricted mean survival time methods lacking in these regards.


2020 ◽  
Vol 21 ◽  
Author(s):  
Roberto Gabbiadini ◽  
Eirini Zacharopoulou ◽  
Federica Furfaro ◽  
Vincenzo Craviotto ◽  
Alessandra Zilli ◽  
...  

Background: Intestinal fibrosis and subsequent strictures represent an important burden in inflammatory bowel disease (IBD). The detection and evaluation of the degree of fibrosis in stricturing Crohn’s disease (CD) is important to address the best therapeutic strategy (medical anti-inflammatory therapy, endoscopic dilation, surgery). Ultrasound elastography (USE) is a non-invasive technique that has been proposed in the field of IBD for evaluating intestinal stiffness as a biomarker of intestinal fibrosis. Objective: The aim of this review is to discuss the ability and current role of ultrasound elastography in the assessment of intestinal fibrosis. Results and Conclusion: Data on USE in IBD are provided by pilot and proof-of-concept studies with small sample size. The first type of USE investigated was strain elastography, while shear wave elastography has been introduced lately. Despite the heterogeneity of the methods of the studies, USE has been proven to be able to assess intestinal fibrosis in patients with stricturing CD. However, before introducing this technique in current practice, further studies with larger sample size and homogeneous parameters, testing reproducibility, and identification of validated cut-off values are needed.


Sign in / Sign up

Export Citation Format

Share Document