Implementing a variational data assimilation system in an operational 1/4 degree global ocean model

2014 ◽  
Vol 141 (687) ◽  
pp. 333-349 ◽  
Author(s):  
Jennifer Waters ◽  
Daniel J. Lea ◽  
Matthew J. Martin ◽  
Isabelle Mirouze ◽  
Anthony Weaver ◽  
...  
2018 ◽  
Vol 146 (2) ◽  
pp. 485-501 ◽  
Author(s):  
Jann Paul Mattern ◽  
Christopher A. Edwards ◽  
Andrew M. Moore

Abstract A procedure to objectively adjust the error covariance matrices of a variational data assimilation system is presented. It is based on popular diagnostics that utilize differences between observations and prior and posterior model solutions at the observation locations. In the application to a data assimilation system that combines a three-dimensional, physical–biogeochemical ocean model with large datasets of physical and chlorophyll a observations, the tuning procedure leads to a decrease in the posterior model-observation misfit and small improvements in short-term forecasting skill. It also increases the consistency of the data assimilation system with respect to diagnostics, based on linear estimation theory, and reduces signs of overfitting. The tuning procedure is easy to implement and only relies on information that is either prescribed to the data assimilation system or can be obtained from a series of short data assimilation experiments. The implementation includes a lognormal representation for biogeochemical variables and associated modifications to the diagnostics. Furthermore, the effect of the length of the observation window (number and distribution of observations) used to compute the diagnostics and the effect of neglecting model dynamics in the tuning procedure are examined.


Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


Sign in / Sign up

Export Citation Format

Share Document