surface concentration
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 130)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 320 ◽  
pp. 126183
Author(s):  
Petr Lehner ◽  
Monika Kubzová ◽  
Vít Křivý ◽  
Petr Konečný ◽  
David Bujdoš ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 115-128
Author(s):  
SANDIP NIVDANGE ◽  
Chinmay Jena ◽  
Pooja Pawar

This paper discusses the comparative results of surface and satellite measurements made during the Phase1 (25 March to 14 April), Phase2 (15 April to 3 May) and Phase3 (3 May to 17May) of Covid-19 imposed lockdown periods of 2020 and those of the same locations and periods during 2019 over India. These comparative analyses are performed for Indian states and Tier 1 megacities where economic activities have been severely affected with the nationwide lockdown. The focus is on changes in the surface concentration of sulfur dioxide (SO2), carbon monoxide (CO), PM2.5 and PM10, Ozone (O3), Nitrogen dioxide (NO2)  and retrieved columnar NO2 from TROPOMI and Aerosol Optical Depth (AOD) from MODIS satellite. Surface concentrations of PM2.5 were reduced by 30.59%, 31.64%  and 37.06%, PM10 by 40.64%, 44.95% and 46.58%, SO2 by 16.73%, 12.13% and 6.71%, columnar NO2 by 46.34%, 45.82% and 39.58% and CO by 45.08%, 41.51% and 60.45% during lockdown periods of Phase1, Phase2 and Phase3 respectively as compared to those of 2019 periods over India. During 1st phase of lockdown, model simulated PM2.5 shows overestimations to those of observed PM2.5 mass concentrations. The model underestimates the PM2.5 to those of without reduction before lockdown and 1st phase of lockdown periods. The reduction in emissions of PM2.5, PM10, CO and columnar NO2 are discussed with the surface transportation mobility maps during the study periods. Reduction in the emissions based on the observed reduction in the surface mobility data, the model showed excellent skills in capturing the observed PM2.5 concentrations. Nevertheless, during the 1st & 3rd phases of lockdown periods AOD reduced by 5 to 40%. Surface O3 was increased by 1.52% and 5.91% during 1st and 3rd Phases of lockdown periods respectively, while decreased by -8.29% during 2nd Phase of lockdown period.


2022 ◽  
Author(s):  
Heigo Ers ◽  
Liis Siinor ◽  
Carolin Siimenson ◽  
Enn Lust ◽  
Piret Pikma

The interface between semi-metallic Sb(111) electrode and ionic liquid with 4,4’-bipyridine addition has been studied. Using in situ scanning tunnelling microscopy and electrochemical impedance spectroscopy, the desorption of 4,4’-bipyridine was demonstrated and a dense underlying structure, formed below a sparse self-assembled monolayer, was visualized. The first SAM layer in contact with the electrode consisted of tightly packed ordered rows, which fine structure has been identified with density functional theory calculations supported by machine learning. The second SAM layer, on top of the first, is characterised by low surface concentration and its unit cell was obtained experimentally. The detection of two separate adsorbed layers indicates that the ordering of organic molecules could extend well beyond the monolayer on the electrode’s surface. These insights are of fundamental and practical importance in the development of nanoelectronic devices.


Author(s):  
Alexander Voznyakovskii ◽  
Anna Neverovskaya ◽  
Aleksey Vozniakovskii ◽  
Sergey Kidalov

A quantitative method is proposed to determine of Stone-Wales defects for carbon nanostructures with sp2 hybridization of carbon atoms. The technique is based on the diene synthesis reaction (Diels-Alder reaction). The proposed method was used to determine Stone-Wales defects in the few-layer graphene (FLG) nanostructures synthesized by the self-propagating high-temperature synthesis (SHS) process, in reduced graphene oxide (rGO) synthesized based on the method of Hammers and in the single-walled carbon nanotubes (SWCNT) TUBAL trademark, Russia. Our research has shown that the structure of FLG is free of Stone-Wales defects, while the surface concentration of Stone-Wales defects in TUBAL carbon nanotubes is 1.1×10-5 mol/m2 and 3.6×10-5 mol/m2 for rGO.


Author(s):  
Е.В. Рутьков ◽  
Е.Ю. Афанасьева ◽  
Н.Р. Галль

Be adsorption and T = 900 - 1100 K results in formation of a stable adsorption state; it drops the activation energy of atomic Be dissolution in the substrate bulk, and all newly deposited Be dissolves in the substrate. The absolute concentration of atomic Be has been measured by Auger electron spectroscopy using specially designed ultra high vacuum getter Be source. The concentration is (1 ± 0.1)•1015 сm-2 , and corresponds to WBe stoichiometry relative to W surface concentration. The layer is destroyed at T > 1100 K, the atomic Be dissolves in the bulk with the activation energy ~ 3,5 eV.


2021 ◽  
Vol 87 (12) ◽  
pp. 11-16
Author(s):  
E. I. Shinko ◽  
O. V. Farafonova ◽  
T. N. Ermolaeva

Conditions for the preparation of carbon nanomaterials for embedding into the discerning layer of a piezoelectric immunosensor are described. The effect of the oxidation method, temperature, and the duration of treatment of nanomaterials with an oxidizing agent on the surface concentration of active functional groups is demonstrated. It is shown that the use of carboxylated carbon nanotubes (CNT) increases the efficiency of their binding to biomolecules and increases the stability of the discerning layer of a piezoelectric sensor when measurements are carried out in liquid media. Conditions for the determination of antibiotics using piezoelectric immunosensors modified with carbon nanomaterial were studied including the choice of immunoreagent concentrations and assessment of the selectivity of antibiotic determination. The CNT-based piezoelectric immunosensors providing rapid, highly sensitive, and selective determination of the analyte at the MRL level and below it in food products and biological fluids are proposed.


2021 ◽  
Vol 21 (24) ◽  
pp. 18303-18317
Author(s):  
Andrea Pazmiño ◽  
Matthias Beekmann ◽  
Florence Goutail ◽  
Dmitry Ionov ◽  
Ariane Bazureau ◽  
...  

Abstract. The evolution of NO2, considered as a proxy for air pollution, was analyzed to evaluate the impact of the first lockdown (17 March–10 May 2020) over the Île-de-France region (Paris and surroundings). Tropospheric NO2 columns measured by two UV-Visible Système d'Analyse par Observation Zénithale (SAOZ) spectrometers were analyzed to compare the evolution of NO2 between urban and suburban sites during the lockdown. The urban site is the observation platform QualAir (48∘50′ N / 2∘21′ E) at the Sorbonne University Pierre and Marie Curie Campus in the center of Paris. The suburban site is located at Guyancourt (48∘46′N / 2∘03′E), Versailles Saint-Quentin-en-Yvelines University, 24 km southwest of Paris. Tropospheric NO2 columns above Paris and Guyancourt have shown similar values during the whole lockdown period from March to May 2020. A decade of data sets were filtered to consider air masses at both sites with similar meteorological conditions. The median NO2 columns and the surface measurements of Airparif (Air Quality Observatory in Île de France) during the lockdown period in 2020 were compared to the extrapolated values estimated from a linear trend analysis for the 2011–2019 period at each station. Negative NO2 trends of −1.5 Pmolec. cm−2 yr−1 (∼ −6.3 % yr−1) are observed from the columns, and trends of −2.2 µg m−3 yr−1 (∼ −3.6 % yr−1) are observed from the surface concentration. The negative anomaly in tropospheric columns in 2020 attributed to the lockdown (and related emission reductions) was found to be 56 % at Paris and 46 % at Guyancourt, respectively. A similar anomaly was found in the data of surface concentrations, amounting to 53 % and 28 % at the urban and suburban sites, accordingly.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Shirong Zhu ◽  
Lu Liu ◽  
Qiaoli Lin

As an emerging alloy material, high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties. In this work, a low melting point GaInSnBiZn high-entropy alloy was designed based on Miedema model, and its surface tension was measured by the continuous pendant-drop method. The results show that the intrinsic surface tension of GaInSnBiZn high-entropy alloy at 80 °C is 545±5 mN/m, and the surface tension of the liquid alloy is significantly reduced by the formation of surface oxide film. The surface tension of GaInSnBiZn high-entropy alloy was analyzed by using theoretical models (Guggenheim model, GSM (general solution) model and Butler model), and the thermodynamic characteristics of the surface tension formation were further verified by combining with thermodynamic calculations, among which the calculated results of Butler model were in good agreement with the experimental data. Meanwhile, it is found that the surface concentration of Bi in the alloy is much larger than the nominal concentration of its bulk phase, which contributes the most to the surface tension of the alloy, however, it contributes the least to the entropy of the alloy formation in combination with the Butler model.


2021 ◽  
Vol 13 (23) ◽  
pp. 4856
Author(s):  
Samuel Rémy ◽  
Magdalena D. Anguelova

The European Centre for Medium-Range Weather Forecasts (ECMWF) operates the Integrated Forecasting System aerosol module (IFS-AER) to provide daily global analysis and forecast of aerosols for the Copernicus Atmosphere Monitoring Service (CAMS). New estimates of sea salt aerosol emissions have been implemented in the IFS-AER using a new parameterization of whitecap fraction as a function of wind speed and sea surface temperature. The effect of whitecap fraction simulated by old and new parameterizations has been evaluated by comparing the IFS-AER new sea salt aerosol characteristics to those of aerosol retrievals. The new parameterization brought a significant improvement as compared to the two parameterizations of sea salt aerosol emissions previously implemented in the IFS-AER. Likewise, the simulated sea salt aerosol optical depth and surface concentration are significantly improved, as compared against ground and remote sensing products.


Author(s):  
K.V. Prasad ◽  
Hanumesh Vaidya ◽  
Fateh Mebarek-Oudina ◽  
Rajashekhar Choudhari ◽  
Kottakkaran Sooppy Nisar ◽  
...  

The current work provides the optimal homotopic analytical methodology for the steady circulation over a non-isothermal radially stretched Riga plate/disc unit. The attributes of the heat, along with the mass transfer process, are assessed in the existence of variable transport and magnetic features. Radial stretched Riga disc is considered along with additional realistic boundary heating conditions, namely, prescribed surface temperature as well as prescribed surface concentration, convective boundary conditions and also zero mass flux concentration on the surface area of the Riga disc. The model tracks Brownian motion as well as the thermal diffusion of nanoparticles in fluid circulation all at once. Regulating equations, which are highly coupled, are changed right into non-dimensional equations using appropriate transformations of similarity. Through assembling series solutions, the resulting framework is planned and examined. Graphic summaries are offered for the rheological qualities of various parameters in size for velocity, temperature, as well as nanoparticles. The modified Hartman number improves the velocity distribution and reduces the temperature distribution in both prescribed surface temperature and convective boundary condition cases. The effect of the chemical reaction parameter shows the reduced concentration distribution for the prescribed surface temperature case. In contrast, it is precisely the opposite in the convective boundary condition case.


Sign in / Sign up

Export Citation Format

Share Document