scholarly journals Improving Variational Data Assimilation through Background and Observation Error Adjustments

2018 ◽  
Vol 146 (2) ◽  
pp. 485-501 ◽  
Author(s):  
Jann Paul Mattern ◽  
Christopher A. Edwards ◽  
Andrew M. Moore

Abstract A procedure to objectively adjust the error covariance matrices of a variational data assimilation system is presented. It is based on popular diagnostics that utilize differences between observations and prior and posterior model solutions at the observation locations. In the application to a data assimilation system that combines a three-dimensional, physical–biogeochemical ocean model with large datasets of physical and chlorophyll a observations, the tuning procedure leads to a decrease in the posterior model-observation misfit and small improvements in short-term forecasting skill. It also increases the consistency of the data assimilation system with respect to diagnostics, based on linear estimation theory, and reduces signs of overfitting. The tuning procedure is easy to implement and only relies on information that is either prescribed to the data assimilation system or can be obtained from a series of short data assimilation experiments. The implementation includes a lognormal representation for biogeochemical variables and associated modifications to the diagnostics. Furthermore, the effect of the length of the observation window (number and distribution of observations) used to compute the diagnostics and the effect of neglecting model dynamics in the tuning procedure are examined.

2017 ◽  
Vol 145 (3) ◽  
pp. 1019-1032 ◽  
Author(s):  
William F. Campbell ◽  
Elizabeth A. Satterfield ◽  
Benjamin Ruston ◽  
Nancy L. Baker

Appropriate specification of the error statistics for both observational data and short-term forecasts is necessary to produce an optimal analysis. Observation error stems from instrument error, forward model error, and error of representation. All sources of observation error, particularly error of representation, can lead to nonzero correlations. While correlated forecast error has been accounted for since the early days of atmospheric data assimilation, observation error has typically been treated as uncorrelated until relatively recently. Thinning, averaging, and/or inflation of the assigned observation error variance have been employed to compensate for unaccounted error correlations, especially for high-resolution satellite data. In this study, the benefits of accounting for nonzero vertical (interchannel) correlation for both the Advanced Technology Microwave Satellite (ATMS) and Infrared Atmospheric Sounding Interferometer (IASI) in the NRL Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR) are assessed. The vertical observation error covariance matrix for the ATMS and IASI instruments was estimated using the Desroziers method. The results suggest lowering the assigned error variance and introducing strong correlations, especially in the moisture-sensitive channels. Strong positive impact on forecast skill (verified against both the ECMWF analyses and high-quality radiosonde data) is shown in both the ATMS and IASI instruments. Additionally, the convergence of the iterative solver in NAVDAS-AR can be improved by small modifications to the observation error covariance matrices, resulting in further reduction in RMS error.


Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


2008 ◽  
Vol 53 (22) ◽  
pp. 3446-3457 ◽  
Author(s):  
JiShan Xue ◽  
ShiYu Zhuang ◽  
GuoFu Zhu ◽  
Hua Zhang ◽  
ZhiQuan Liu ◽  
...  

2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


2020 ◽  
Author(s):  
Ross Noel Bannister

Abstract. Following the development of the simplified atmospheric convective-scale "toy" model (the ABC model, named after its three key parameters: the pure gravity wave frequency, A, the controller of the acoustic wave speed, B, and the constant of proportionality between pressure and density perturbations, C), this paper introduces its associated variational data assimilation system, ABC-DA. The purpose of ABC-DA is to permit quick and efficient research into data assimilation methods suitable for convective scale systems. The system can also be used as an aid to teach and demonstrate data assimilation principles. ABC-DA is flexible, configurable and is efficient enough to be run on a personal computer. The system can run a number of assimilation methods (currently 3DVar and 3DFGAT have been implemented), with user configurable observation networks. Observation operators for direct observations and wind speeds are part of the system, although these can be expanded relatively easily. A key feature of any data assimilation system is how it specifies the background error covariance matrix. ABC-DA uses a control variable transform method to allow this to be done efficiently. This version of ABC-DA mirrors many operational configurations, by modelling multivariate error covariances with uncorrelated control parameters, and spatial error covariances with special uncorrelated spatial patterns separately for each parameter. The software developed (amongst other things) does model runs, calibration tasks associated with the background error covariance matrix, testing and diagnostic tasks, single data assimilation runs, multi-cycle assimilation/forecast experiments, and has associated visualisation software. As a demonstration, the system is used to tackle a scientific question concerning the role of geostrophic balance (GB) to model background error covariances between mass and wind fields. This question arises because, although GB is a very useful mechanism that is successfully exploited in larger scale assimilation systems, its use is questionable at convective scales due to the typically larger Rossby numbers where GB is not so relevant. A series of identical twin experiments is done in cycled assimilation configurations. One experiment exploits GB to represent mass-wind covariances in a mirror of an operational set-up (with use of an additional vertical regression (VR) step, as used operationally). This experiment performs badly where assimilation error accumulates over time. Two further experiments are done: one that does not use GB, and another that does but without the VR step. Turning off GB impairs the performance, and turning off VR improves the performance in general. It is concluded that there is scope to further improve the way that the background error covariance matrices are calibrated, with some directions discussed.


Sign in / Sign up

Export Citation Format

Share Document