The dependence of clear-sky outgoing long-wave radiation on surface temperature and relative humidity

1999 ◽  
Vol 125 (558) ◽  
pp. 2103-2126 ◽  
Author(s):  
R. P. Allan ◽  
K. P. Shine ◽  
A. Slingo ◽  
J. A. Pamment
2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Maria Zoran ◽  
Roxana Savastru ◽  
Dan Savastru

AbstractCumulative stress energy in active seismic regions caused by tectonic forces creates various earthquake precursors. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like MODIS (Terra/Aqua) and AVHRR (NOAA). Satellite time-series data, coupled with ground based observations, where available, can enable scientists to survey pre-earthquake signals in the areas of strong tectonic activity. This paper presents observations made using time series MODIS and NOAA-AVHRR satellite data for derived multi-parameters including land surface temperature (LST), outgoing long-wave radiation (OLR), and mean air temperature (AT) for the moderate, 5.9 magnitude earthquake, which took place on the 27th of October, 2004, inthe seismic region of Vrancea, in Romania. Anomalous thermal infrared signals, reflected by a rise of several degrees celsius (°C) in LSTs, and higher OLR values were seen several days before the earthquake. AT values in the epicentral area also increased almost two days prior to the earthquake and intensified three days after the main shock. Increases in LSTs and OLR disappeared three days after the main shock. The survey and joint analysis of geospatial and in-situ geophysical information on land surface temperatures and outgoing long-wave radiation provides new insights into the field of seismic hazard assessment in Vrancea, a significant area of tectonic activity in Romania and Europe.


2021 ◽  
Vol 15 (5) ◽  
pp. 2273-2293
Author(s):  
John Mohd Wani ◽  
Renoj J. Thayyen ◽  
Chandra Shekhar Prasad Ojha ◽  
Stephan Gruber

Abstract. Recent studies have shown the cold and arid trans-Himalayan region comprises significant areas underlain by permafrost. While the information on the permafrost characteristics of this region started emerging, the governing energy regime is of particular interest. This paper presents the results of a surface energy balance (SEB) study carried out in the upper Ganglass catchment in the Ladakh region of India which feeds directly into the Indus River. The point-scale SEB is estimated using the 1D mode of the GEOtop model for the period of 1 September 2015 to 31 August 2017 at 4727 m a.s.l. elevation. The model is evaluated using field-monitored snow depth variations (accumulation and melting), outgoing long-wave radiation and near-surface ground temperatures and showed good agreement with the respective simulated values. For the study period, the SEB characteristics of the study site show that the net radiation (29.7 W m−2) was the major component, followed by sensible heat flux (−15.6 W m−2), latent heat flux (−11.2 W m−2) and ground heat flux (−0.5 W m−2). During both years, the latent heat flux was highest in summer and lowest in winter, whereas the sensible heat flux was highest in post-winter and gradually decreased towards the pre-winter season. During the study period, snow cover builds up starting around the last week of December, facilitating ground cooling during almost 3 months (October to December), with sub-zero temperatures down to −20 ∘C providing a favourable environment for permafrost. It is observed that the Ladakh region has a very low relative humidity in the range of 43 % compared to e.g. ∼70 % in the European Alps, resulting in lower incoming long-wave radiation and strongly negative net long-wave radiation averaging ∼-90 W m−2 compared to −40 W m−2 in the European Alps. Hence, land surfaces at high elevation in cold and arid regions could be overall colder than the locations with higher relative humidity, such as the European Alps. Further, it is found that high incoming short-wave radiation during summer months in the region may be facilitating enhanced cooling of wet valley bottom surfaces as a result of stronger evaporation.


2016 ◽  
Vol 10 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Alaa M. AL-Lami ◽  
Ali M. AL-Salihi ◽  
Yaseen K. AL-Timimi

Sign in / Sign up

Export Citation Format

Share Document