Intact protein analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry

2003 ◽  
Vol 17 (16) ◽  
pp. 1809-1814 ◽  
Author(s):  
Melanie Lin ◽  
Jennifer M. Campbell ◽  
Dieter R. Mueller ◽  
Urs Wirth
Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6054
Author(s):  
Antonio Monopoli ◽  
Angelo Nacci ◽  
Tommaso R. I. Cataldi ◽  
Cosima D. Calvano

The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis.


2000 ◽  
Vol 66 (11) ◽  
pp. 4720-4724 ◽  
Author(s):  
Matthew L. Magnuson ◽  
James H. Owens ◽  
Catherine A. Kelty

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns forC. parvum were distinguishable from those obtained forCryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers.


Sign in / Sign up

Export Citation Format

Share Document