Fault‐tolerant control of an aerial manipulator with guaranteed tracking performance

Author(s):  
Yadong Ding ◽  
Yaoyao Wang ◽  
Bai Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Davood Allahverdy ◽  
Ahmad Fakharian ◽  
Mohammad Bagher Menhaj

In this paper, a fault-tolerant control system based on back-stepping integral sliding mode controller (BISMC) is designed and analyzed for both nonlinear translational and rotational subsystems of the quadrotor unmanned aerial vehicles (UAVs). The novelty of this paper is about combination of a classic controller with a repetitive algorithm to reduce the response time to actuator faults and have better tracking performance. The actuator fault is defined based on the loss of effectiveness and bias fault. Next, the iterative learning control algorithm (ILCA) is used to compensate for the unknown fault input according to previous recorded experiences. In the normal condition (without actuators fault), BISMC can force the actual trajectories toward the desired commands and reduce chattering about control signals, and in the presence of the actuators fault or external disturbances, the mentioned learning algorithm can incline the accuracy of the tracking performance and compensate for the occurred error. The Lyapunov theory illustrates that the proposed control strategy can stabilize the system despite the actuators’ fault and external disturbances. The simulation results show the effectiveness of the proposed scheme in comparison with another method.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Ao He ◽  
Yinong Zhang ◽  
Huimin Zhao ◽  
Ban Wang ◽  
Zhenghong Gao

This paper proposes an adaptive fault-tolerant control strategy for a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) to simultaneously compensate actuator faults and model uncertainties. With the proposed adaptive control schemes, both actuator faults and model uncertainties can be accommodated without the knowledge of fault information and uncertainty bounds. The proposed control scheme is constructed with two separate control modules. The low-level control allocation module is used to distribute the virtual control signals among the available redundant actuators. The high-level control module is constructed with an adaptive sliding mode controller, which is employed to maintain the overall system tracking performance in both faulty and uncertain conditions. In the case of actuator faults and model uncertainties, the adaptive scheme will be triggered to generate more virtual control signals to compensate the virtual control error and maintain the desired system tracking performance. The effectiveness of the proposed control strategy is validated through comparative simulation tests under different faulty and uncertain scenarios.


Sign in / Sign up

Export Citation Format

Share Document