Cover crop impacts on soil physical properties: A review

2020 ◽  
Vol 84 (5) ◽  
pp. 1527-1576 ◽  
Author(s):  
Humberto Blanco‐Canqui ◽  
Sabrina J. Ruis
2015 ◽  
Vol 29 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Samuel Idoko Haruna ◽  
Nsalambi Vakanda Nkongolo

Abstract Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.


2010 ◽  
Vol 18 (6) ◽  
pp. 1189-1193 ◽  
Author(s):  
Ying-Mei LI ◽  
Hong-Mei CAO ◽  
Fu-Li XU ◽  
Wu-Ting REN ◽  
Jian-Li LIU ◽  
...  

2003 ◽  
Vol 67 (2) ◽  
pp. 637 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 218
Author(s):  
Cameron M. Ogilvie ◽  
Waqar Ashiq ◽  
Hiteshkumar B. Vasava ◽  
Asim Biswas

Plant roots are an integral part of soil ecosystems and contribute to various services, including carbon and nutrient cycling, weathering, and soil formation. They also modify soil physical properties (e.g., soil water content, pore size distribution, and bulk density) and impact subsequent crops’ growth. Cover crops have been reported to improve soil and environmental quality by reducing nutrient losses, improving soil water content, and increasing soil organic matter. Understanding the complex interactions between cover crop roots and soil (RS) is of utmost importance. However, cover crop RS interactions have not been critically reviewed. In this article, we investigated the nature of cover crop physical RS interactions and explored the emerging technologies for their study. We also assessed technologies that may be readily applied to the study of physical RS interactions in cover crop systems and discussed ways to improve related research in the future.


Author(s):  
Simon Gluhar ◽  
Anela Kaurin ◽  
Domink Vodnik ◽  
Damijana Kastelec ◽  
Vesna Zupanc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document