scholarly journals Spray‐coated lead‐free Cs 2 AgBiBr 6 double perovskite solar cells with high open‐circuit voltage

Solar RRL ◽  
2021 ◽  
Author(s):  
Nathan Daem ◽  
Jennifer Dewalque ◽  
Felix Lang ◽  
Anthony Maho ◽  
Gilles Spronck ◽  
...  
Author(s):  
Pietro Caprioglio ◽  
Fengshuo Zu ◽  
Christian M. Wolff ◽  
Martin Stolterfhot ◽  
Norbert Koch ◽  
...  

Author(s):  
Ping Hou ◽  
Wenxiang Yang ◽  
Ning Wan ◽  
Zhi Fang ◽  
Jinju Zheng ◽  
...  

We report a facile BiBr3(DMSO)2 adduct process to produce high-quality Cs2AgBiBr6 films with large grains for the first time, which leads to an enhancement of over 40% on the PCE of Cs2AgBiBr6-based solar cells compared to that of the control sample.


2019 ◽  
Vol 9 (33) ◽  
pp. 1901631 ◽  
Author(s):  
Pietro Caprioglio ◽  
Martin Stolterfoht ◽  
Christian M. Wolff ◽  
Thomas Unold ◽  
Bernd Rech ◽  
...  

Solar RRL ◽  
2021 ◽  
pp. 2000811
Author(s):  
Miriam Más-Montoya ◽  
David Curiel ◽  
Junke Wang ◽  
Bardo J. Bruijnaers ◽  
René A. J. Janssen

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


Sign in / Sign up

Export Citation Format

Share Document