On the Optimization of Microstructure and Mechanical Properties of CrWMn Tool Steel by Deep Cryogenic Treatment

2019 ◽  
Vol 90 (5) ◽  
pp. 1800523 ◽  
Author(s):  
Kaikai Wang ◽  
Kaixuan Gu ◽  
R. D. K. Misra ◽  
Liubiao Chen ◽  
Xuanzhi Liu ◽  
...  
2006 ◽  
Vol 118 ◽  
pp. 9-14 ◽  
Author(s):  
Young Mok Rhyim ◽  
Sang Ho Han ◽  
Young Sang Na ◽  
Jong Hoon Lee

It is well known that the durability of tool steel could be improved by deep cryogenic treatment. It has been assumed that the increase of service life of tool steel caused by decrease of retained austenite and/or by formation of nano-scale fine η-carbide. But the principles of deep cryogenic treatment remain unclear yet. In this research, to manifest the effect of deep cryogenic treatment on wear resistance, the specimen was emerged in liquid nitrogen for 20 hours for deep cryogenic treatment after austenitizing and the following tempering temperature was varied. The microstructure of specimens was observed using TEM and the mechanical properties and wear resistance were examined. As the tempering temperature increased, the carbides became larger and fine carbides were formed above certain temperature. In the case of deep cryogenic treated specimen, the number of carbides increased while the carbides size was decreased, furthermore, the fine carbide forming temperature was lowered also. It was considered that the deep cryogenic treatment increased the driving force for the nucleation of carbides. As tempering temperature increased, hardness decreased while wear resistance and impact energy increased. The deep cryogenic treated specimens showed this tendency more clearly. It was considered that the wear resistance is affected not only to the hardness but also to the precipitation of fine carbides, and this carbide evolution can be optimized through the deep cryogenic treatment.


Sign in / Sign up

Export Citation Format

Share Document