bearing steel
Recently Published Documents


TOTAL DOCUMENTS

1686
(FIVE YEARS 356)

H-INDEX

46
(FIVE YEARS 9)

2022 ◽  
Vol 11 (1) ◽  
pp. 1-9
Author(s):  
Seçil Ekşi ◽  
Cetin Karakaya ◽  
Ahmed Ozan Örnekci

2022 ◽  
pp. 1-16
Author(s):  
Yawen Xue ◽  
Xiaoliang Shi ◽  
Kaipeng Zhang ◽  
Qipeng Huang ◽  
Chaohua Wu

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 429
Author(s):  
Yong Wang ◽  
Guangqiang Li ◽  
Chengyi Zhu ◽  
Xinbin Liu ◽  
Yulong Liu ◽  
...  

In this study, niobium was added into grain-oriented silicon steels, four Nb-bearing hot-rolled bands with Nb content range from 0–0.025 wt% were prepared and a detailed study of the micro characterization (microstructure, texture and precipitates) of hot-rolled bands was carried out by various analysis methods, such as EBSD and TEM. The results indicate that the precipitates in Nb-free steel are MnS and AlN; however, in the Nb-bearing steel they are MnS, AlN and Nb(C, N). The precipitates are finer and more dispersed in Nb-bearing steel, and a stronger pining force was obtained, which contributes to the finer microstructure and less recrystallization fractions of the hot-rolled bands. A larger volume fraction and stronger intensity of Goss texture is presented in steel with 0.025 wt% Nb due to the effective inhibiting effect. However, it has little effect on the changes of microstructure and texture when the Nb content is more than 0.009 wt%.


2022 ◽  
Vol 12 (1) ◽  
pp. 469
Author(s):  
Kateryna Kostyk ◽  
Ivan Kuric ◽  
Milan Saga ◽  
Viktoriia Kostyk ◽  
Vitalii Ivanov ◽  
...  

The relevant problem is searching for up-to-date methods to improve tools and machine parts’ performance due to the hardening of surface layers. This article shows that, after the magnetic-pulse treatment of bearing steel Cr15, its surface microhardness was increased by 40–50% compared to baseline. In this case, the depth of the hardened layer was 0.08–0.1 mm. The magnetic-pulse processing of hard alloys reduces the coefficient of microhardness variation from 0.13 to 0.06. A decrease in the coefficient of variation of wear resistance from 0.48 to 0.27 indicates the increased stability of physical and mechanical properties. The nitriding of alloy steels was accelerated 10-fold that of traditional gas upon receipt of the hardened layer depth of 0.3–0.5 mm. As a result, the surface hardness was increased to 12.7 GPa. Boriding in the nano-dispersed powder was accelerated 2–3-fold compared to existing technologies while ensuring surface hardness up to 21–23 GPa with a boride layer thickness of up to 0.073 mm. Experimental data showed that the cutting tool equipped with inserts from WC92Co8 and WC79TiC15 has a resistance relative to the untreated WC92Co8 higher by 183% and WC85TiC6Co9—than 200%. Depending on alloy steel, nitriding allowed us to raise wear resistance by 120–177%, boriding—by 180–340%, and magneto-pulse treatment—by more than 183–200%.


2022 ◽  
Vol 7 ◽  
Author(s):  
W. Wijanarko ◽  
H. Khanmohammadi ◽  
N. Espallargas

Water-based lubricants have the potential to become the largest environmentally friendly lubricants in applications such as electric vehicles and the newly emerging green technologies of the future due to their inherent low viscosity and cooling properties. In order to be environmentally acceptable (EAL), both base lubricants and additives should comply with biodegradability, non-toxicity, and non-bioaccumulation requirements. Additives for water-based lubricants should ideally be polar and soluble in water and, at the same time, should not increase the electrical conductivity to critical levels for corrosion. However, most additives used in synthetic or mineral oils are non-polar. Ionic liquids have recently gained attention as lubricant additives due to their high polarity, making them highly surface-active (i.e. high tendency to adsorb on metal surfaces). However, they are seen as highly corrosive for many metal alloys. In this work, a water-glycol lubricant containing two different ionic liquids has been investigated as a potential green lubricant for a bearing steel AISI 52100 with accurate control on electrical conductivity and pH. The selected ionic liquids were tributylmethylphosphonium dimethylphosphate (PP) and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP). The tribological behaviour of the ionic liquids was compared with a well-known organic friction modifier, dodecanoic acid (C12). The ionic liquids showed lower friction and wear rate than the water-based lubricant alone. However, they showed higher friction than the lubricant formulated with C12, in which PP gave lower friction than BMP due to low pH. A detailed subsurface analysis of the wear track using scanning-transmission electron microscopy (STEM) showed that a thick oxide tribofilm was built on the wear track for both lubricants formulated with ionic liquids due to high electrical conductivity. This tribofilm gave beneficial effect on wear. Although PP and BMP gave thicker tribofilms than C12, it was not durable, resulting in cracking and detachment.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mao-Guo Zhao ◽  
Xu-Feng Wang ◽  
Gu-Jun Chen ◽  
Sheng-Ping He

A thermodynamic model for seven CaO-MgO-BaO-CaF2-SiO2-Al2O3-TiO2 ladle slags based on the Ion and Molecule Coexistence theory (IMCT) is establishment and validated by the experiment results at 1873K. The calculated activity of SiO2, Al2O3 and TiO2 in the slag can be approved by the experiment results and the IMCT model used in this study is reasonable. Then the influence factors such as the mass ratio of CaO to SiO2 (C/S ratio) ranging from 1 to 10, the mass ratio of CaO to Al2O3 (C/A ratio) ranging from 1 to 2.5, TiO2 content (wt pct) ranging from 0 to 30, BaO content (wt pct) ranging from 0 to 30 are investigated based on the thermodynamic calculating results. The raise of C/S ratio, TiO2 content and BaO content in the slag can increase the molar Gibbs energy change (ΔG) of Ti reacted with SiO2 and Al2O3 or Al reacted with SiO2. The effect of C/A ratio on the molar Gibbs energy change (ΔG) of Ti reacted with SiO2 and Al2O3 or Al reacted with SiO2 was less. Finally, the slag with higher C/S ratio and TiO2 content and appropriate BaO content can weaken the reaction between Ti and SiO2 or Al2O3 in the slag.


Sign in / Sign up

Export Citation Format

Share Document