Comprehensive investigation of leakage problems for concrete gravity dams with penetrating cracks based on detection and monitoring data: A case study

2017 ◽  
Vol 25 (4) ◽  
pp. e2127 ◽  
Author(s):  
Jiang Hu ◽  
Fuheng Ma ◽  
Suhua Wu
2019 ◽  
Vol 12 (3) ◽  
pp. 551-579
Author(s):  
K. O. PIRES ◽  
A. T. BECK ◽  
T. N. BITTENCOURT ◽  
M. M. FUTAI

Abstract The conventional design of concrete gravity dams still follows the deterministic method, which does not directly quantify the effect of uncertainties on the safety of the structure. The theory of structural reliability allows the quantification of safety of these structures, from the quantification of the inherent uncertainties in resistance and loading parameters. This article illustrates application of structural reliability theory to the case study analysis of a built concrete gravity dam. Results show that reliability of the built structure is greater than that of the designed structure. The study compares reliability for design conditions, with the corresponding safety coefficients, illustrating a lack of linearity between safety coefficients and reliability. Furthermore, the study shows which are the failure modes and the design parameters with greater influence on dam safety.


2012 ◽  
Vol 256-259 ◽  
pp. 2240-2243
Author(s):  
Abdelhamid Hebbouche ◽  
Mahmoud Bensaibi ◽  
Hussein Mroueh

There are a large number of concrete dams worldwide. Some of the dams are in areas prone to seismicity and were built many years ago with minimal consideration to seismic loads. Dam safety during and after an earthquake, is the aim of the present study. The failure of a dam during an earthquake will be catastrophic in terms of human life and financial losses. In the present work, an analytical fragility analysis was performed in order to characterize the seismic vulnerability of concrete gravity dams by using a probabilistic method to model sources of uncertainty that could impact dam performance. The assessment of the seismic vulnerability of concrete gravity dams under near-fault ground motions was performed to assess their performance against seismic hazards. A case study was considered, it is about the dam of Oued el Fodda on the Oued Chelif River, West Algeria. This dam was designed in the early 1930s.


2011 ◽  
Vol 704-705 ◽  
pp. 352-357
Author(s):  
Gui Xiang Zeng

Taking a large hydropower station in Xinjiang Autonomous Region as an example, and based on the limited unit method, the structure and seism forces features and response rules of rolling concrete gravity dam under different construction conditions were studied. The purpose for the paper is to understand dam working status under the different design conditions, and to evaluate anti-earthquake safety capability. It is proved that the present findings should play an important significance in the development of rolling concrete dam construction technology. Key words: Rolling Concrete Gravity Dams, Limited Unit Methods, Static Force Analysis, Dynamic Features.


Sign in / Sign up

Export Citation Format

Share Document