roller compacted concrete
Recently Published Documents


TOTAL DOCUMENTS

564
(FIVE YEARS 168)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
pp. 1-25
Author(s):  
Ezzeldin K. Mohamed ◽  
Eehab Khalail

Roller compacted concrete is widely known for its relatively low cost and short construction time. RCC gravity dams require high foundation (rock) bearing capacity. Research has been carried out which proposes to rationalise the amount of material in the dam by creating inner voids, in the shape of bubbles. As a key requirement, the introduced bubbles should not affect the dam stability and safety. The bubbles will reduce the self-weight of the dam and minimise the required rock bearing capacity. A system of pipes connecting the bubbles ensures drainage of the bubbles. The proposed dam would save about 12% of the required concrete volume. Different construction methods were studied and the best alternative is the use of precast hollow boxes. This decreases RCC placement in the dam by 32.5%. The objective is to speed the construction process and minimise the risk of the heat of hydration.


Author(s):  
Ninghui Liang ◽  
Xiufei You ◽  
Ru Yan ◽  
Qingxu Miao ◽  
Xinrong Liu

AbstractTo explore the effect of multi-scale polypropylene fiber (PPF) hybridization on the mechanical properties of roller-compacted concrete (RCC), the early-age (3, 7, 14, 28 days) compressive strength, splitting tensile strength and uniaxial tensile test of RCC reinforced with micro-, macro- and hybrid polypropylene fibers were investigated. Then, the tensile stress–strain curve of polypropylene fiber-reinforced roller-compacted concrete (PFRCC) and the corresponding tensile parameters were obtained. The uniaxial tensile constitutive equation of PFRCC and fiber hybrid effect function was also proposed. Finally, the enhancement mechanism of fiber hybridization on mechanical properties of RCC was analyzed. The results indicated that the strength and toughness of PFRCC improved with the incorporation of PPF, showing obvious plastic failure characteristics of PFRCC. Before curing the concrete for 7 days, micro-PPF played a major role in strengthening RCC, while macro-PPF played a major role in reinforcing concrete after that. Moreover, the tensile strength and toughness indexes of multi-scale PFRCC performed the best, indicating the positive hybridization of three types of PPF. The proposed PFRCC uniaxial tensile constitutive equation and fiber hybrid effect function based on existing researches were also well matched with the experimental results.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Saad Issa Sarsam

Prediction of the strength properties of roller compacted concrete from mathematical models is significant for rapid decision of the quality of the pavement. In the present assessment, roller compacted concrete slab samples have been prepared in the laboratory using 12 percentage of Portland cement by weight of aggregates. Cube, core, and beam specimens were extracted from the slab samples and tested for compressive, indirect tensile, and flexural strength at the age of 28 days. Strength test results were corelated among each other and mathematical models were obtained. It was observed that low significance of aggregates gradation type on the compressive and tensile strength exists. However, high influence of dense gradation on flexural strength could be detected. The flexural strength of dense graded mixture is higher than that of gap graded mixtures. The compressive strength of gap graded mixture is higher than that of dense graded mixture. It can be concluded that the flexural strength is higher than the tensile strength by (2.17 and 1.24) folds for dense and gap graded mixtures respectively. The compressive strength is higher than tensile strength by (5.72 and 4.87) folds for dense and gap graded mixtures respectively. The compressive strength is higher than the flexural strength by (3.4 and 2.49) folds for dense and gap graded roller compacted concrete respectively. The obtained mathematical models exhibit high coefficient of determination and may be implemented in verification of the specific strength property based on other measured strength properties of roller compacted concrete.


Author(s):  
Xiaoliang Zhu ◽  
Yuxin Gao ◽  
Wenjing Song ◽  
Jingjing Xu ◽  
Chengyang Li ◽  
...  

Fuels ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 471-486
Author(s):  
Miguel Ángel Sanjuán ◽  
Cristina Argiz

Nowadays, coal is increasingly being used as an energy source in some countries. This coal-fired generation process, however, has the disadvantage that produces large quantities of coal fly ash. Its characteristics differ depending on the combustion conditions and the coal source. Fineness will influence early compressive strength in cement-based materials. The finer the binding material, the higher the early compressive strength. They can be used to produce high-volume fly ash (HVFA) concrete, self-compacting concrete (SCC), concrete for marine infrastructures, pervious concrete, roller compacted concrete (RCC) and so on.More than seven hundred samples of coal fly ash were collected from a coal-fired power plant for a period of ten years, and their fineness were characterized by sieving. The average fineness on 45 µm, 63 µm, 90 µm and 200 µm mesh sieves were 22.5%, 15.5%, 9.1% and 2.0%, respectively. Then, most of the coal fly ash particles were lower than 45 µm, i.e., from 15 to 30% were retained on the 45 µm sieve, and from 10 to 20% by mass of coal fly ash particles were retained on a 63 µm sieve. Fineness on a 45 µm sieve is a good indirect indicator of the residues on the 63 µm, 90 µm and 200 µm mesh sieves. Accordingly, it is suggested to broaden the range from ±5% to as high as ±7% regarding the fineness variation requirement. Finally, the tested coal fly ash can be applied as cement constituent.


Sign in / Sign up

Export Citation Format

Share Document